do not understand the integration result

2 visualizzazioni (ultimi 30 giorni)
cemile basgul
cemile basgul il 21 Apr 2020
Commentato: cemile basgul il 4 Giu 2020
when I integrate this via: int(1/4624*exp(12028*(2367-t/643*t+2199060)),t,0,360)
I get this result: 1933501^(1/2)*pi^(1/2)*erf((720*1933501^(1/2))/643)*exp(26478763956))/55617472
What does this number mean? why am I getting a value like this?
  4 Commenti
cemile basgul
cemile basgul il 29 Apr 2020
Modificato: darova il 29 Apr 2020
Not to be mistaken by the paranthesis, I wrote variable numbers as below. However, I am still getting those long numbers such as
This is for F(1)
(538948486624482741*exp(-4579610173792908711849542041234325/912795614384412005898158547664896))/39076167421235083376000 - (1851567729550599*exp(-28376783941740538497326829612455/3135926614906861015272882438144))/156304669684940333504 - (6612410559153235*exp(33062052795766175/1693660223635456)*ei(-52899284473225880/1851567729550599))/19538083710617541688 + (6612410559153235*exp(33062052795766175/1693660223635456)*ei(-13224821118306470000/538948486624482741))/19538083710617541688
A=4624;
E=10^5;
R=8.314; %Universal gas constant
Tref=616.15; %Melting point of PEEK in K (343C)
T=T0; %Temperature of constant points
syms t
for m=1:101
a(m)=sum(Temperature{m}>=485) ; %constant degree of healing points
b(m)=sum(Temperature{m}<485); %non-isothermal degree of healing points
timea(m)=a(m).*0.003;
timeb(m)=b(m).*0.003;
c(m)=(Temperature{m}(a(m)+1)-Temperature{m}(it(m)))/(time(m)-timea(m)); %slope of the curve
d(m)=Temperature{m}(a(m)+1)-(c(m)*timea(m)); %constant for the linear line equation
F(m)=int(1/(A*exp((E/R)*((1/(c(m)*t+d(m)))-(1/Tref)))),t,timea(m),time(m));
end
cemile basgul
cemile basgul il 29 Apr 2020
If I use Integral instead of Int, it works, I mean gives a number value such as 3.4059e-09
A=4624;
E=10^5;
R=8.314; %Universal gas constant
Tref=616.15; %Melting point of PEEK in K (343C)
T=T0; %Temperature of constant points
syms t
p=NaN(1,101);
for m=1:101
a(m)=sum(Temperature{m}>=485) ; %constant degree of healing points
b(m)=sum(Temperature{m}<485); %non-isothermal degree of healing points
timea(m)=a(m).*0.003;
timeb(m)=b(m).*0.003;
c(m)=(Temperature{m}(a(m)+1)-Temperature{m}(it(m)))/(time(m)-timea(m)); %slope of the curve
d(m)=Temperature{m}(a(m)+1)-(c(m)*timea(m)); %constant for the linear line equation
F=integral(@(t)(1./(A.*exp((E./R)*((1./(c(m).*t+d(m)))-(1./Tref))))),timea(m),time(m));
p(m)=F^(1/4);
end

Accedi per commentare.

Risposte (1)

Nishant Gupta
Nishant Gupta il 27 Mag 2020
If you use vpa function for evaluation, the result will be inf since its a very large number.
syms t;
>> expr = 1/4624*exp(12028*(2367-t/643*t+2199060));
>> F = int(expr,[0 360])
F =
(1933501^(1/2)*pi^(1/2)*erf((720*1933501^(1/2))/643)*exp(26478763956))/55617472
>> vpa(F)
ans =
Inf
  1 Commento
cemile basgul
cemile basgul il 4 Giu 2020
do you know why int and integral gives different results for this? I am not sure which one to use.

Accedi per commentare.

Prodotti


Release

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by