How to integrate the function in Matlab?

2 visualizzazioni (ultimi 30 giorni)
Ravikiran Mundewadi
Ravikiran Mundewadi il 1 Mag 2020
Commentato: Ameer Hamza il 1 Mag 2020
given y(t) = a*x+b*(((t^2/2)+t))+c*(((t^3/3)+t^2+t))+d*(((t^4/4)+t^3+((3*t^2)/2)+t))+e*(((t^5/5)+t^4+2*t^3+2*t^2+t))+f*(((t^6/6)+t^5+((5*t^4)/2)+((10*t^3)/3)+((5*t^2)/2)+t))
int((exp(x-t)*(y(t)^3)),t,0,1)

Risposte (1)

Ameer Hamza
Ameer Hamza il 1 Mag 2020
Modificato: Ameer Hamza il 1 Mag 2020
Try this
syms t
s = 0.3;
a = 0.2;
b = 0.5;
c = 0.3;
d = 0.8;
e = 0.1;
f = 0.8;
x = 0.3;
y = a*x+b*(((t^2/2)+t))+c*(((t^3/3)+t^2+t))+d*(((t^4/4)+t^3+((3*t^2)/2)+t))+e*(((t^5/5)+t^4+2*t^3+2*t^2+t))+f*(((t^6/6)+t^5+((5*t^4)/2)+((10*t^3)/3)+((5*t^2)/2)+t));
y_int = int((exp(x-t)*(y^3)),t,0,1);
y_int2 = vpa(y_int);
disp(y_int) % symbolic output
disp(y_int2) % output in decimal format
Result
(3*exp(-7/10)*(14312622602045415832*exp(1) - 38905741936622033629))/1000000
164.22632490929883023849072628867
  2 Commenti
Ravikiran Mundewadi
Ravikiran Mundewadi il 1 Mag 2020
a,b,c,d,e,f are constants without values how to calculate?
Ameer Hamza
Ameer Hamza il 1 Mag 2020
If they are unknown constants, then you can also define them as symbolic variables
syms t s a b c d e f x
y = a*x+b*(((t^2/2)+t))+c*(((t^3/3)+t^2+t))+d*(((t^4/4)+t^3+((3*t^2)/2)+t))+e*(((t^5/5)+t^4+2*t^3+2*t^2+t))+f*(((t^6/6)+t^5+((5*t^4)/2)+((10*t^3)/3)+((5*t^2)/2)+t));
y_int = int((exp(x-t)*(y^3)),t,0,1);
The output will be a symbolic expression in term of (s a b c d e f x).
y_int = 20339574*d^3*exp(x) + 28436783046*e^3*exp(x) + 80571537949566*f^3*exp(x) - (4821*b^3*exp(x - 1))/8 - (2665441*c^3*exp(x - 1))/27 - (3538475895*d^3*exp(x - 1))/64 - (9662398822711*e^3*exp(x - 1))/125 - (1752129179993373*f^3*exp(x - 1))/8 + 222*b^3*exp(x) + 36318*c^3*exp(x) - a^3*x^3*exp(x - 1) + 17838*b*c^2*exp(x) + 3252*b^2*c*exp(x) + 914130*b*d^2*exp(x) + 19818*b^2*d*exp(x) + 77530230*b*e^2*exp(x) + 6773016*c*d^2*exp(x) + 143892*b^2*e*exp(x) + 819570*c^2*d*exp(x) + 9819703674*b*f^2*exp(x) + 676668594*c*e^2*exp(x) + 1205850*b^2*f*exp(x) + 7218954*c^2*e*exp(x) + 98703428940*c*f^2*exp(x) + 7108899858*d*e^2*exp(x) + 72227142*c^2*f*exp(x) + 634676832*d^2*e*exp(x) + 1184848286826*d*f^2*exp(x) + 7404854034*d^2*f*exp(x) + 16114285888956*e*f^2*exp(x) + 1137476253630*e^2*f*exp(x) - (96967*b*c^2*exp(x - 1))/2 - (35345*b^2*c*exp(x - 1))/4 - (79515243*b*d^2*exp(x - 1))/32 - (861849*b^2*d*exp(x - 1))/16 - (10537449387*b*e^2*exp(x - 1))/50 - (294575189*c*d^2*exp(x - 1))/16 - (7822617*b^2*e*exp(x - 1))/20 - (26733731*c^2*d*exp(x - 1))/12 - (213541775907*b*f^2*exp(x - 1))/8 - (45984397557*c*e^2*exp(x - 1))/25 - (26222619*b^2*f*exp(x - 1))/8 - (294347011*c^2*e*exp(x - 1))/15 - (1073214948765*c*f^2*exp(x - 1))/4 - (1932399324261*d*e^2*exp(x - 1))/100 - (1178002201*c^2*f*exp(x - 1))/6 - (138018436773*d^2*e*exp(x - 1))/80 - (51532025078445*d*f^2*exp(x - 1))/16 - (644111363199*d^2*f*exp(x - 1))/32 - (876063410205933*e*f^2*exp(x - 1))/20 - (30919810303923*e^2*f*exp(x - 1))/10 + a^3*x^3*exp(x) - (447*a*b^2*x*exp(x - 1))/4 + 6*a^2*b*x^2*exp(x) - (5221*a*c^2*x*exp(x - 1))/3 + 15*a^2*c*x^2*exp(x) - (892563*a*d^2*x*exp(x - 1))/16 + 48*a^2*d*x^2*exp(x) - (80434323*a*e^2*x*exp(x - 1))/25 + 195*a^2*e*x^2*exp(x) - (1179786123*a*f^2*x*exp(x - 1))/4 + 978*a^2*f*x^2*exp(x) + 242628*b*c*d*exp(x) + 1948164*b*c*e*exp(x) + 17901792*b*c*f*exp(x) + 16125516*b*d*e*exp(x) + 161510964*b*d*f*exp(x) + 130095204*c*d*e*exp(x) + 1681817136*b*e*f*exp(x) + 1409661276*c*d*f*exp(x) + 15791037732*c*e*f*exp(x) + 177725405940*d*e*f*exp(x) - (27*a^2*b*x^2*exp(x - 1))/2 - 37*a^2*c*x^2*exp(x - 1) - (501*a^2*d*x^2*exp(x - 1))/4 - (2613*a^2*e*x^2*exp(x - 1))/5 - (5295*a^2*f*x^2*exp(x - 1))/2 - (2638063*b*c*d*exp(x - 1))/4 - 5295635*b*c*e*exp(x - 1) - (97324157*b*c*f*exp(x - 1))/2 - (876673227*b*d*e*exp(x - 1))/20 - (3512258097*b*d*f*exp(x - 1))/8 - (707270753*c*d*e*exp(x - 1))/2 - (45716528721*b*e*f*exp(x - 1))/10 - (15327426191*c*d*f*exp(x - 1))/4 - (214622453951*c*e*f*exp(x - 1))/5 - (9662154824511*d*e*f*exp(x - 1))/20 + 42*a*b^2*x*exp(x) + 642*a*c^2*x*exp(x) + 20526*a*d^2*x*exp(x) + 1183614*a*e^2*x*exp(x) + 108504786*a*f^2*x*exp(x) - 825*a*b*c*x*exp(x - 1) - (15357*a*b*d*x*exp(x - 1))/4 - (108957*a*b*e*x*exp(x - 1))/5 - (36995*a*c*d*x*exp(x - 1))/2 - (292551*a*b*f*x*exp(x - 1))/2 - (593894*a*c*e*x*exp(x - 1))/5 - 891961*a*c*f*x*exp(x - 1) - (8040531*a*d*e*x*exp(x - 1))/10 - (26807721*a*d*f*x*exp(x - 1))/4 - 58988181*a*e*f*x*exp(x - 1) + 306*a*b*c*x*exp(x) + 1416*a*b*d*x*exp(x) + 8022*a*b*e*x*exp(x) + 6810*a*c*d*x*exp(x) + 53820*a*b*f*x*exp(x) + 43704*a*c*e*x*exp(x) + 328146*a*c*f*x*exp(x) + 295806*a*d*e*x*exp(x) + 2465520*a*d*f*x*exp(x) + 21700566*a*e*f*x*exp(x)
you can use subs() function to substitute specific values of these constants

Accedi per commentare.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by