Lyapunov exponent for fractional order differential equation

2 visualizzazioni (ultimi 30 giorni)
Hi, I have three dimensional fde model of which I want to compute Lyapunov exponent with respect to parameter. I have taken this code from the paper entitled 'Matlab code for Lyapunov exponents of fractional order systems' but it's not working, Please help.
function [t,LE]=FO_Lyapunov_q(ne,ext_fcn,t_start,h_norm,t_end,x_start,h,q,p);
x=zeros(ne*(ne+1),1);
x0=x;
c=zeros(ne,1);
gsc=c; zn=c;
n_it = round((t_end-t_start)/h_norm);
x(1:ne)=x_start;
i=1;
while i<=ne
x((ne+1)*i)=1.0;
i=i+1;
end
t=t_start;
it=1;
while it<=n_it
[T,Y] = fde12(q,ext_fcn,t,t+h_norm,x,h);
t=t+h_norm;
Y=transpose(Y);
x=Y(size(Y,1),:);
i=1;
while i<=ne
j=1;
while j<=ne;
x0(ne*i+j)=x(ne*j+i);
j=j+1;
end;
i=i+1;
end;
zn(1)=0.0;
j=1;
while j<=ne
zn(1)=zn(1)+x0(ne*j+1)*x0(ne*j+1);
j=j+1;
end;
zn(1)=sqrt(zn(1));
j=1;
while j<=ne
x0(ne*j+1)=x0(ne*j+1)/zn(1);
j=j+1;
end
j=2;
while j<=ne
k=1;
while k<=j-1
gsc(k)=0.0;
l=1;
while l<=ne;
gsc(k)=gsc(k)+x0(ne*l+j)*x0(ne*l+k);
l=l+1;
end
k=k+1;
end
k=1;
while k<=ne
l=1;
while l<=j-1
x0(ne*k+j)=x0(ne*k+j)-gsc(l)*x0
(ne*k+l);
l=l+1;
end
k=k+1;
end;
zn(j)=0.0;
k=1;
while k<=ne
zn(j)=zn(j)+x0(ne*k+j)*x0(ne*k+j);
k=k+1;
end
zn(j)=sqrt(zn(j));
k=1;
while k<=ne
x0(ne*k+j)=x0(ne*k+j)/zn(j);
k=k+1;
end
j=j+1;
end
% update running vector magnitudes
k=1;
while k<=ne;
c(k)=c(k)+log(zn(k));
k=k+1;
end;
% normalize exponent
k=1;
while k<=ne
LE(k)=c(k)/(t-t_start);
k=k+1;
end
i=1;
while i<=ne
j=1;
while j<=ne;
x(ne*j+i)=x0(ne*i+j);
j=j+1;
end
i=i+1;
end;
x=transpose(x);
it=it+1;
end
%----------------------------------------------------------------------------------------------------------------------------%
function f=LE_RF(t,x,p)
f=zeros(size(x));
X= [x(4), x(7), x(10);
x(5), x(8), x(11);
x(6), x(9), x(12)];
%RF equations
f(1)=x(2)*(x(3)-1+x(1)*x(1))+0.1*x(1);
f(2)=x(1)*(3*x(3)+1-x(1)*x(1))+0.1*x(2);
f(3)=-2*x(3)*(p+x(1)*x(2));
%Jacobian matrix
J=[2*x(1)*x(2)+0.1, x(1)*x(1)+x(3)-1, x(2);
-3*x(1)*x(1)+3*x(3)+1,0.1,3*x(1);
-2*x(2)*x(3),-2*x(1)*x(3),-2*(x(1)*x(2)+p)];
%Righthand side of variational equations
f(4:12)=J*X; % To be modified if ne>3
%----------------------------------------------------------------------------------------------------------------------------%
function run_Lyapunov_p(ne,ext_fcn,t_start,h_norm,t_end,x_start,h,q,p_min,p_max,n);
hold on;
p_step=(p_max-p_min)/n
p=p_min;
while p<=p_max
[t,LE]=FO_Lyapunov_q(ne,ext_fcn,t_start,h_norm,t_end,x_start,h,q,p);
p=p+p_step
plot(p,LE);
end
end
%----------------------------------------------------------------------------------------------------------------------------%
run_FO_Lyapunov_q(3,@LE_RF,0,0.05,150,[0.1;0.1;0.1],0.002,0.9,1,800)

Risposte (1)

nune pratyusha
nune pratyusha il 26 Lug 2022
you have to download fde12.m file and put all programs in one folder then run. It will work

Categorie

Scopri di più su Matrix Computations in Help Center e File Exchange

Prodotti


Release

R2015a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by