Shallow Water wave phase speed.

6 visualizzazioni (ultimi 30 giorni)
Jeremiah Thomas
Jeremiah Thomas il 8 Mag 2020
  • I am working on a school assignment for a Tides and Water levels class and there is a question that says to make plots of the following:
  • Shallow water wave phase speed (m/s) for water depths from 1 m to 4000 m. Label the axes.
  • Minimum wavelength to be considered as shallow water waves for the same depth range ( 1 to 4000 meters).
  • I believe I have the first part figured out but am unsure on the second. This is what I have so far:
clear;
clf;
clc;
% Constants
g = 9.81; % gravitational acceleration in m/s^2
d =1:4000 ; % water depth in meters
% Shallow water wave phase speed
c = sqrt(g*d)
%%
plot (c,d);
grid on
ylim([1, 4000]);
xlim([0,200]);
xlabel ('m/s^2')
ylabel('Depth')
title('Shallow Water Wave Phase Speed')
%%
L = g*T^2/2/pi %deep water
L = T*sqrt(gd)%shallow water
  2 Commenti
Ashton Faire
Ashton Faire il 8 Mag 2020
Fancy seeing you here!
Jeremiah Thomas
Jeremiah Thomas il 10 Mag 2020
And to no avail!

Accedi per commentare.

Risposte (1)

Gabriel Ruiz-Martinez
Gabriel Ruiz-Martinez il 10 Set 2021
@Jeremiah Thomas, a solution could be this:
% Wave period (s)
T = 2:15;
% Water depths vector (m)
d = 1:4000;
% Gravitational acceleration constant (ms^-2)
g = 9.81;
% Shallow water wave phase speed $ c = sqrt{gh} $
% (ms^-1)
c = sqrt(g.*d);
% Plotting
figure;
plot(d,c,'Color','red');
ax = gca;
ax.XLim = [1 4000];
ax.YLim = [0 200];
ax.XLabel.String = 'Water depth (m)';
ax.YLabel.String = 'Wave speed (ms^-1)';
% Solving dispersion equation, using Lo aproximation **********
for i = 1 : length(T)
for j = 1 : length(d)
Lo = (g*T(i)^2)/(2*pi);
L(j) = Lo*(tanh(((2*pi)*((sqrt(d(j)/g))/T(i)))^(3/2)))^(2/3);
end
end
ld = d./L;
ldq = find(ld <= 0.04);
fprintf('Minimum wavelength to be considered as shallow waters: %5.3f m \r\n',min(L(ldq)));
I hope this script can be useful!.
Regards.

Prodotti


Release

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by