Problem with cholesky decomposition
2 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Peter Ouwehand
il 19 Mag 2020
Commentato: Christine Tobler
il 19 Mag 2020
When I apply the chol function to A = [1 -1; 0 1], it correctly informs me that the matrix is not positive definite.
But when I run chol(A, 'lower'), the answer is the identity matrix [1 0; 0 1].
Can anyone replicate this? Any reasons why this should be so?
0 Commenti
Risposta accettata
David Goodmanson
il 19 Mag 2020
Hi Peter,
when you use the 'lower' option, chol assumes that the upper triangle is the complex conjugate transpose of the lower triangle. In this case that means that chol assumes the matrix is [1 0; 0 1], the identity matrix. So of course the cholesky decomposition is also the identity matrix.
1 Commento
Christine Tobler
il 19 Mag 2020
When chol(A) is called without the 'lower' or 'upper' option, this is treated as if the 'upper' option had been chosen: So in the first example, chol assumes the matrix is [1 -1; -1 1]. This is because the Cholesky decomposition only works for symmetric matrices.
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Linear Algebra in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!