Integration of a function with modified Bessel function of the first kind.
2 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Hi,
I want to create the function mentioned below on matlab:
Where all the variables are defined numbers (k,s=1,p=6,nc=84,..), W`k is a complex vector and Iν(z) is the modified Bessel function of the first kind.
The integral is function of z.
I'm trying to get the intergral values(not considering the log factor in this case).

f = @(z) ((exp(-s.*z.*((p.*nc)+Sigma2^-2)))./((norm(avg_ww(kk,:)).*sqrt(p.*nc.*z)).^(nc-1))).*besseli(nc-1,2.*s.*(norm(avg_ww(kk,:)).*sqrt(p.*nc.*z))).*besseli(0,2.*s.*(1./Sigma2).*sqrt(z.*abs(Uh)^2));
upper_limit = linspace(0.1,40); % upper limit of the integral (randomly chosen)
xval = arrayfun(@(uplim) integral(f, 0, uplim, 'ArrayValued',true), upper_limit);
Can you please advise if my integration is correct? because it doesn't feel like it
2 Commenti
David Goodmanson
il 2 Giu 2020
Modificato: David Goodmanson
il 10 Giu 2020
Hi Anthony,
Youd had better go back and check your parentheses placements, because right now I_0(...) is part ot the argument of the I_(nc-1) bessel function. That may not be the only bad one, I don't know.
Risposte (0)
Vedere anche
Categorie
Scopri di più su Bessel functions in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!