Phase portrait of a 2 dimensional system that converges to a unit circle

7 visualizzazioni (ultimi 30 giorni)
The dynamical system contains two ODES:
dxdt=(1-(x.^2+y.^2)).*x-3.*y.*(x.^2+y.^2);
dydt=(1-(x.^2+y.^2)).*y+3.*x.*(x.^2+y.^2);
where :
x(t)=cos(3*t);
y(t)=sin(3*t);
This system has a unstable solution: x(t)=y(t)=0.
I want to produce a phase portrait of this system which will look like this:
Please help me. I do not know what code to use in order to produce this plot. The aatachment is the question. Thank you for the help!!!!
  3 Commenti
Penglin Cai
Penglin Cai il 6 Giu 2020
Yes, the picture below is the original question, l really do not know what command to use in order to plot this graph. Thank you for your help.
Chen
Chen il 21 Ott 2024
Hi, I've been studying coupled oscillators, can you tell me which book this is from?

Accedi per commentare.

Risposta accettata

Ameer Hamza
Ameer Hamza il 6 Giu 2020
Modificato: Ameer Hamza il 6 Giu 2020
try this
dx_dt = @(x,y) (1-(x.^2+y.^2)).*x-3.*y.*(x.^2+y.^2);
dy_dt = @(x,y) (1-(x.^2+y.^2)).*y+3.*x.*(x.^2+y.^2);
[x, y] = meshgrid(-2:0.02:2, -2:0.02:2);
dx = dx_dt(x, y);
dy = dy_dt(x, y);
streamslice(x, y, dx, dy);
axis tight
axis equal
hold on
fplot(@(t) cos(3*t), @(t) sin(3*t), [0, 2*pi/3], 'Color', 'r', 'LineWidth', 2)

Più risposte (0)

Categorie

Scopri di più su Mathematics in Help Center e File Exchange

Prodotti


Release

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by