ode45 failing to produce a solution

1 visualizzazione (ultimi 30 giorni)
pxg882
pxg882 il 21 Nov 2012
I'm looking for some help with ode45 solver.
I have the following set of ODEs:
function Y=f(~,X)
n=1.3;
dF1deta=X(2);
dF2deta=n^(-1)*((X(2)^(2)+X(4)^(2))^((n-1)/2))^(-1)*((X(1)^(2)-X(3)^(2)+(-X(5))*X(2))*(1+(n-1)*(X(2)^(2)+X(4)^2)^(-1)*X(4)^(2))-(n-1)*X(2)*X(4)*(X(2)^(2)+X(4)^(2))^(-1)*(2*X(1)*X(3)+(-X(5))*X(4)));
dG1deta=X(4);
dG2deta=n^(-1)*((X(2)^(2)+X(4)^(2))^((n-1)/2))^(-1)*((2*X(1)*X(3)+(-X(5))*X(4))*(1+(n-1)*(X(2)^(2)+X(4)^2)^(-1)*X(2)^(2))-(n-1)*X(2)*X(4)*(X(2)^(2)+X(4)^(2))^(-1)*(X(1)^(2)-X(3)^(2)+(-X(5))*X(2)));
dH1deta=(3*n+1)/(n+1)*X(1);
Y = [dF1deta; dF2deta; dG1deta; dG2deta; dH1deta];
I need to solve this as such:
etaspan = [0 20];
Xinit = [0; 0; 0; 0; -0.73591509];
options = odeset('AbsTol', 1e-10, 'RelTol', 1e-8);
[eta,X]=ode45(@f,etaspan,Xinit,options);
figure;
hold all;
plot(eta,X(:,1));
plot(eta,X(:,3));
plot(eta,-X(:,5));
hold off;
xlabel('\eta')
hleg = legend('F','G','-H','Location','NorthWest');
In this case ode45 fails to produce a solution. I'm guessing this is because of the four initial conditions being set to zero? Is there another solver that will be able to handle this?
Thanks.
  2 Commenti
Jan
Jan il 21 Nov 2012
Modificato: Jan il 21 Nov 2012
What does "ODE45 fails" explicitly mean? Do you get an error message or do the results differ from your expectations? Please explain such important details.
An absolute tolerance of 1e-10 is really very tiny. I cannot imagine any scientific field, where an ODE45 integration with such a tiny tolerance has any kind of power and meaning.
pxg882
pxg882 il 21 Nov 2012
Granted the tolerance is high, maybe that should be altered. Running the script produces a blank plot, I am assuming this is due to the initial values being set to zero. It would appear that since these values are zero at the initial state they remain at zero for all eta. Looking at an example solution to this problem I know this isn't the case though.

Accedi per commentare.

Risposte (2)

Jan
Jan il 21 Nov 2012
This does not concern your problem, but I like clean code, because it makes debugging much easier.
  • 1/X is much cheaper than x^-1
n = 1.3;
XX = X .^ 2;
dF2deta = 1 / (n * ((XX(2) + XX(4))^((n-1)/2)) * ...
((XX(1)-XX(3) - X(5)*X(2)) * ...
(1+(n-1) *(XX(2)+XX(4)) * XX(4)) - ...
(n-1) * X(2)*X(4) / (XX(2)+XX(4)) * ...
(2*X(1) * X(3) - X(5) * X(4))));
Without an editor for the matching of parenthesis the cleanup was not secure. So please test this, or better apply the shown simplifications by your own. Do you see the optical improvements? Usually theye are accompanied by a faster processing also. But this can still be improved.

Jan
Jan il 21 Nov 2012
You can use the debugger to find out, if your function replies Y value differing from 0. Simply set a breakpoint in a lines of your function "f" and look, what's going on.
Again I repeat, that in my opinion lines like these cannot be debugged by a human - at least not with a reasonable effort:
dG2deta=n^(-1)*((X(2)^(2)+X(4)^(2))^((n-1)/2))^(-1)*((2*X(1)*X(3)+(-X(5))*X(4))*(1+(n-1)*(X(2)^(2)+X(4)^2)^(-1)*X(2)^(2))-(n-1)*X(2)*X(4)*(X(2)^(2)+X(4)^(2))^(-1)*(X(1)^(2)-X(3)^(2)+(-X(5))*X(2)));
Simplify your code to simplify your life!
  5 Commenti
Jan
Jan il 27 Nov 2012
Ok. Now what does "fails to produce a solution" mean? Do you get an error message of a trajectory, which stays on the zero value?
pxg882
pxg882 il 27 Nov 2012
Right o.k. I've been confusing myself here a bit as well (trying to do too many things at once!).
So the re-written function to be solved is this:
function Y=f(~,X)
n=1.3;
A=1/(X(2)^2+X(4)^2)^((n-1)/2);
B=(n-1)*1/(X(2)^2+X(4)^2)^2;
C=-(n-1)*X(2)*X(4)*1/(X(2)^2+X(4)^2)^2;
dF1deta=X(2);
dF2deta=(A/n)*((X(1)^2-X(3)^2-X(5)*X(2))*(1+B*X(4)^2)+C*(2*X(1)*X(3)-X(5)*X(4)));
dG1deta=X(4);
dG2deta=(A/n)*((2*X(1)*X(3)-X(5)*X(4))*(1+B*X(2)^2)+C*(X(1)^2-X(3)^2-X(5)*X(2)));
dH1deta=(3*n+1)/(n+1)*X(1);
Y = [dF1deta; dF2deta; dG1deta; dG2deta; dH1deta];
Using ode45 as such:
etaspan = [0 6];
Xinit = [0; 0; 0; 0; 0.7359];
options = odeset('AbsTol', 1e-6, 'RelTol', 1e-4);
[eta,X]=ode45(@f,etaspan,Xinit,options);
figure;
hold all;
plot(eta,X(:,1));
plot(eta,X(:,3));
plot(eta,-X(:,5));
hold off;
xlabel('\eta')
hleg = legend('F','G','-H','Location','NorthWest');
Just making sure things are clear.
Running the above script produces a blank plot. I'm assuming this is indicating that all the solutions are identically zero for all values of eta. From the known solution I know this isn't the case though.

Accedi per commentare.

Categorie

Scopri di più su Programming in Help Center e File Exchange

Tag

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by