Velocity of a Weather Balloon

10 visualizzazioni (ultimi 30 giorni)
Ertugrul Icer
Ertugrul Icer il 16 Giu 2020
Commentato: Image Analyst il 17 Giu 2020
Let the following polynomial represent the velocity of a weather balloon following the launch:
v(t) = -0.25*t.^3 + 36*t.^2 - 760t + 4100
Here, "t" needs to be dened as a symbolic variable. By using the given velocity polynomial, construct a MATLAB code to:
a) Find the altitude polynomial of the balloon in terms of t where constant term of the altitude polynomial is dened as "9".
b) Determine when the balloon hits the ground (Your code should give one exact answer as an acceptable numerical value for t).
c) Obtain plots of altitude and velocity from time 0 until the balloon hits the ground by using the command "ezplot".
  2 Commenti
David Hill
David Hill il 16 Giu 2020
What have you done? Do you have a specific question?
Ertugrul Icer
Ertugrul Icer il 16 Giu 2020
I couldn't write the code the question asked for

Accedi per commentare.

Risposta accettata

David Hill
David Hill il 16 Giu 2020
I will give you a start:
syms t;
v=-0.25*t.^3 + 36*t.^2 - 760*t + 4100;
s=int(v)+9;
a=diff(v);
ezplot(s,[0,155.7]);
figure;
ezplot(v,[0,155.7]);
  5 Commenti
Ertugrul Icer
Ertugrul Icer il 16 Giu 2020
i think its true but why; why u write like (v=[-.25,36,-760,4100];) how can be possible without using (t)
David Hill
David Hill il 17 Giu 2020
Because it is a polynomial and matlab has special functions that support polynomials.

Accedi per commentare.

Più risposte (1)

Image Analyst
Image Analyst il 17 Giu 2020
Another hint:
t = linspace(0, 125, 1000);
v = -0.25*t.^3 + 36*t.^2 - 760*t + 4100 % Your equation
% Now plot it:
plot(t, v, 'b-', 'LineWidth', 2);
grid on;
xlabel('t', 'FontSize', 20);
ylabel('Velocity', 'FontSize', 20);
% Draw a line at v=0
yline(0, 'Color', 'black', 'LineWidth', 2);

Tag

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by