Integrate PDEPE solution wrt x

9 visualizzazioni (ultimi 30 giorni)
I have solved a 1D spherical Diffusion PDE using pdepe in Matlab, which has given me Concentration(x,t) {= } as a 2D array Now in continuation of my research, I need to find Stress as a function of distance and time {= }, whose expression has terms of and . How should I tackle this part, ie, integrate x^2.C(x,t) wrt x.

Risposta accettata

Bjorn Gustavsson
Bjorn Gustavsson il 17 Giu 2020
This rather straightforward method should get the job done (assuming you cannot get away with simply use trapz, or cumtrapz, but will definitely need the integral at "all" points in x and y and not only the ones you got out of the PDE-solution of C):
C = peaks(123); % Just making up some mock-up data
x = 0:122; % and X
t = 0:122; % and t-coordinates
[X,T] = meshgrid(x,t);
I1 = @(t,a,b) integral(@(x) interp2(X,T,P,x,t),a,b)
% this gives you a function to evaluate for any time and point along x,
% below for time 12 s integration boundaries from 3 to 37
I1(12,3,37)
HTH
  3 Commenti
Bjorn Gustavsson
Bjorn Gustavsson il 19 Giu 2020
Ok, if you're a recent matlaber, then I guess the anonymous functions are one of the most tricky parts to wrap your head around. Take some time to really grasp that construct.
In this case you don't integrate a matrix, in my solution you integrate a function where the function calculates the function-values by interpolation of the C matrix for an arbitrary point in time and along all values of x that the integral-function asks for. That way you should be able to modify the function I used to something like:
@(x) x.^2.*interp2(X,T,P,x,t)
Instead of what I used.
Jayant Choudhary
Jayant Choudhary il 19 Giu 2020
Thankyou so much, it works very well.

Accedi per commentare.

Più risposte (0)

Tag

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by