Do you know that an analytical solution exists at all, with those parameters as effectively unknowns? In fact, I'll claim quite confidently it does not. Have you looked at the mess it creates? Even if a solurion existed, it would surely be so nasty looking that you could not write it down in a large book anyway.
In fact, it is trivial to write equations far simpler than this that have provably no solution that can be formed. Congratulations! You wrote another. :)
If you provide values for the parameters, it will generate a solution.
Finally, be careful even if you use a numerical solver. If I substitute in the parameters you indicate, then plot the result. I also took out the unnecessary place where you set it to zero, since that is implicit in tools like solve and vpasolve.
eq1
eq1 =
x + (110915138028460900352*((541*cos((737*(30233/(2680*x))^(1/2))/250)*((4269466172889345*cosh((737*(82385/(5896*x))^(1/2))/250))/4611686018427387904 - (1928603208551655*sinh((737*(82385/(5896*x))^(1/2))/250)*(82385/(5896*x))^(1/2))/70368744177664))/1000 - cos((737*(30233/(2680*x))^(1/2))/250)*((240998723186793*cosh((737*(82385/(5896*x))^(1/2))/250))/8796093022208 - (4269466172889345*sinh((737*(82385/(5896*x))^(1/2))/250))/(4611686018427387904*(82385/(5896*x))^(1/2)) + (886705459556757*sinh((737*(82385/(5896*x))^(1/2))/250)*(82385/(5896*x))^(1/2))/3435973836800) + (sin((737*(30233/(2680*x))^(1/2))/250)*((4269466172889345*cosh((737*(82385/(5896*x))^(1/2))/250))/4611686018427387904 - (1928603208551655*sinh((737*(82385/(5896*x))^(1/2))/250)*(82385/(5896*x))^(1/2))/70368744177664))/(30233/(2680*x))^(1/2) + (541*sin((737*(30233/(2680*x))^(1/2))/250)*(30233/(2680*x))^(1/2)*((240998723186793*cosh((737*(82385/(5896*x))^(1/2))/250))/8796093022208 - (4269466172889345*sinh((737*(82385/(5896*x))^(1/2))/250))/(4611686018427387904*(82385/(5896*x))^(1/2)) + (886705459556757*sinh((737*(82385/(5896*x))^(1/2))/250)*(82385/(5896*x))^(1/2))/3435973836800))/1000 - 2197471291370957/4398046511104)^2)/(2171181777475614225203200*cos((737*(2993001339026887/(140737488355328*x))^(1/2))/250)*((4787086884452255*cosh((737*(4956422973553657/(281474976710656*x))^(1/2))/250))/9223372036854775808 + (99501*sinh((737*(4956422973553657/(281474976710656*x))^(1/2))/250)*(4956422973553657/(281474976710656*x))^(1/2))/5000) - 230688210477147289600000*cos((737*(30233/(2680*x))^(1/2))/250)*((240998723186793*cosh((737*(82385/(5896*x))^(1/2))/250))/8796093022208 - (4269466172889345*sinh((737*(82385/(5896*x))^(1/2))/250))/(4611686018427387904*(82385/(5896*x))^(1/2)) + (886705459556757*sinh((737*(82385/(5896*x))^(1/2))/250)*(82385/(5896*x))^(1/2))/3435973836800) + 3583566893165861404672000*cos((737*(30233/(2680*x))^(1/2))/250)*((4269466172889345*cosh((737*(82385/(5896*x))^(1/2))/250))/4611686018427387904 - (1928603208551655*sinh((737*(82385/(5896*x))^(1/2))/250)*(82385/(5896*x))^(1/2))/70368744177664) + 230584300921369395200000*cos((737*(2993001339026887/(140737488355328*x))^(1/2))/250)*((6837753132798593*cosh((737*(4956422973553657/(281474976710656*x))^(1/2))/250))/343597383680000 + (4787086884452255*sinh((737*(4956422973553657/(281474976710656*x))^(1/2))/250))/(9223372036854775808*(4956422973553657/(281474976710656*x))^(1/2)) + (53830041*sinh((737*(4956422973553657/(281474976710656*x))^(1/2))/250)*(4956422973553657/(281474976710656*x))^(1/2))/5000000) - 115292150460684697600000*(cos((737*(30233/(2680*x))^(1/2))/250)*((4269466172889345*cosh((737*(82385/(5896*x))^(1/2))/250))/4611686018427387904 - (1928603208551655*sinh((737*(82385/(5896*x))^(1/2))/250)*(82385/(5896*x))^(1/2))/70368744177664) + sin((737*(30233/(2680*x))^(1/2))/250)*(30233/(2680*x))^(1/2)*((240998723186793*cosh((737*(82385/(5896*x))^(1/2))/250))/8796093022208 - (4269466172889345*sinh((737*(82385/(5896*x))^(1/2))/250))/(4611686018427387904*(82385/(5896*x))^(1/2)) + (886705459556757*sinh((737*(82385/(5896*x))^(1/2))/250)*(82385/(5896*x))^(1/2))/3435973836800))*((7314504539970061*cos((737*(30233/(2680*x))^(1/2))/250)*((4269466172889345*cosh((737*(82385/(5896*x))^(1/2))/250))/4611686018427387904 - (1928603208551655*sinh((737*(82385/(5896*x))^(1/2))/250)*(82385/(5896*x))^(1/2))/70368744177664))/225179981368524800 - (8653018309761255*cos((737*(30233/(2680*x))^(1/2))/250)*((240998723186793*cosh((737*(82385/(5896*x))^(1/2))/250))/8796093022208 - (4269466172889345*sinh((737*(82385/(5896*x))^(1/2))/250))/(4611686018427387904*(82385/(5896*x))^(1/2)) + (886705459556757*sinh((737*(82385/(5896*x))^(1/2))/250)*(82385/(5896*x))^(1/2))/3435973836800))/144115188075855872 + (8653018309761255*sin((737*(30233/(2680*x))^(1/2))/250)*((4269466172889345*cosh((737*(82385/(5896*x))^(1/2))/250))/4611686018427387904 - (1928603208551655*sinh((737*(82385/(5896*x))^(1/2))/250)*(82385/(5896*x))^(1/2))/70368744177664))/(144115188075855872*(30233/(2680*x))^(1/2)) + (7314504539970061*sin((737*(30233/(2680*x))^(1/2))/250)*(30233/(2680*x))^(1/2)*((240998723186793*cosh((737*(82385/(5896*x))^(1/2))/250))/8796093022208 - (4269466172889345*sinh((737*(82385/(5896*x))^(1/2))/250))/(4611686018427387904*(82385/(5896*x))^(1/2)) + (886705459556757*sinh((737*(82385/(5896*x))^(1/2))/250)*(82385/(5896*x))^(1/2))/3435973836800))/225179981368524800) + (230688210477147289600000*sin((737*(30233/(2680*x))^(1/2))/250)*((4269466172889345*cosh((737*(82385/(5896*x))^(1/2))/250))/4611686018427387904 - (1928603208551655*sinh((737*(82385/(5896*x))^(1/2))/250)*(82385/(5896*x))^(1/2))/70368744177664))/(30233/(2680*x))^(1/2) + (230584300921369395200000*sin((737*(2993001339026887/(140737488355328*x))^(1/2))/250)*((4787086884452255*cosh((737*(4956422973553657/(281474976710656*x))^(1/2))/250))/9223372036854775808 + (99501*sinh((737*(4956422973553657/(281474976710656*x))^(1/2))/250)*(4956422973553657/(281474976710656*x))^(1/2))/5000))/(2993001339026887/(140737488355328*x))^(1/2) - 2171181777475614225203200*sin((737*(2993001339026887/(140737488355328*x))^(1/2))/250)*(2993001339026887/(140737488355328*x))^(1/2)*((6837753132798593*cosh((737*(4956422973553657/(281474976710656*x))^(1/2))/250))/343597383680000 + (4787086884452255*sinh((737*(4956422973553657/(281474976710656*x))^(1/2))/250))/(9223372036854775808*(4956422973553657/(281474976710656*x))^(1/2)) + (53830041*sinh((737*(4956422973553657/(281474976710656*x))^(1/2))/250)*(4956422973553657/(281474976710656*x))^(1/2))/5000000) + 3583566893165861404672000*sin((737*(30233/(2680*x))^(1/2))/250)*(30233/(2680*x))^(1/2)*((240998723186793*cosh((737*(82385/(5896*x))^(1/2))/250))/8796093022208 - (4269466172889345*sinh((737*(82385/(5896*x))^(1/2))/250))/(4611686018427387904*(82385/(5896*x))^(1/2)) + (886705459556757*sinh((737*(82385/(5896*x))^(1/2))/250)*(82385/(5896*x))^(1/2))/3435973836800) - 51918110721334201600000)
x0 = vpasolve(eq1)
x0 =
0.014727457616242243836166601226342
fplot(eq1)
yline(0);
hold on
plot(x0,0,'r*')

The root it found is in red. But those two vertical lines that look like singularities are exactly that. They are not zeros, but places where the function crosses from -inf to +inf. So while there is a root at those locations, it surely will not be the root you want to see.
But is that the real solution you wanted to find?
Lets take that plot, and expand it. Look very closely, as if with a magnifying glass. Zoom in. Now what do you see? Which root did vpasolve find? Look for the red *, as that indicates the root.
As you can see, this function you wish to solve seemes to have almost infinitely many roots.
Honestly, I think you are kidding yourself if you accept anything from this mess as a close approximation to reality.