Issue with LSTM training
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
% Using the LSTM NN function.
clc; clear all; close all;
% Training the function.
inputTrain = xlsread('Vehicle_Data_MY19CadillacCT6.xlsx',1,'C38:L100');
ouputTrain = xlsread('Vehicle_Data_MY19CadillacCT6.xlsx',1,'M38:O100');
% Testing the results
inputTest = xlsread('Vehicle_Data_MY19CadillacCT6.xlsx',1,'C101:L110');
ouputTest = xlsread('Vehicle_Data_MY19CadillacCT6.xlsx',1,'M101:O110');
inputSize = 10;
outputSize = 3;
numHiddenUnits = 50;
layers = [ sequenceInputLayer(inputSize) lstmLayer(numHiddenUnits)
fullyConnectedLayer(outputSize) regressionLayer];
options = trainingOptions('adam', ...
'MaxEpochs',1000,...
'GradientThreshold',0.01, ...
'InitialLearnRate',0.0001);
net = trainNetwork(inputTrain,ouputTrain,layers,options);
outputPrediction = predict(net,inputTest);
Error using trainNetwork (line 170)
Error setting property 'ExternalLayers' of class 'nnet.internal.cnn.analyzer.NetworkAnalyzer':
Size of value must match specified dimensions M×1.
Error in PhD_Thesis_1 (line 24)
net = trainNetwork(inputTrain,ouputTrain,layers,options);
Caused by:
Error using nnet.internal.cnn.layer.util.inferParameters (line 7)
Error setting property 'ExternalLayers' of class 'nnet.internal.cnn.analyzer.NetworkAnalyzer':
Size of value must match specified dimensions M×1.
0 Commenti
Risposte (1)
Pranav Verma
il 12 Ago 2020
Hi Srikant,
From the provided code, it seems that you are creating an LSTM network for regression and while defining the layers, inputSize and outputSize does not match with the inputTrain and ouputTrain sizes. While defining the sequenceInputLayer size and fullyConnectedLayer size, use the sizes directly from the inputTrain and ouputTrain using the size function. Please refer to below documentation for size function:
Also, please refer to the following example for creating a regression LSTM network.
Thanks,
Pranav Verma
0 Commenti
Vedere anche
Categorie
Scopri di più su Image Data Workflows in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!