how to use solve() without a 'z' variable solution

3 visualizzazioni (ultimi 30 giorni)
Hi, i'm trying to code a 'hn' and 'hc' solver, it uses those equations and data, but
close all
clear all
clc
%DATA
alfa = degtorad(30);, b = 0.14;, L = b;, m = L*sin(alfa);,k = L*sin(alfa);, pendiente = 0.001;,q = 4;, n = 0.011;
%FUNCTIONS
syms h
d = @(h) b+h.*(m+k);
a = @(h) b.*h+(h.^2)*(m+k)./2;
pm = @(h) b+h.*(sqrt(1+m)+sqrt(1+k));
eta = @(h) h.*(b+h*(m+k)+2*b)./(3*(b+h*(m+k)+b));
fr = @(h) (((q.^2).*d(h))./9.8.*a(h).^3).^0.5;
man = @(h) q.*n./(pendiente.^0.5) == (a(h).^(5/3))./(pm(h).^(2/3));
%SOLUTIONS
rug = eta(h);
hn = solve(man(h),h) %%%%HERE IS MY PROBLEM
hc = solve(fr(h).^2==1,h,) %%%%%HERE IS MY PROBLEM
Ec = hc + (q.^2)/((a(hc).^2)*2*9.8)
En = hn + (q.^2)/((a(hn).^2)*2*9.8)
And when I run it, matlab show me this:
Warning: Unable to solve symbolically. Returning a numeric solution using vpasolve.
> In sym/solve (line 304)
In calculos (line 15)
hn =
5.992149502432489941281916778964
hc =
root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 1)
root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 2)
root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 3)
root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 4)
root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 5)
root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 6)
root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 7)
Warning: Solution is not unique because the system is rank-deficient.
> In symengine
In sym/privBinaryOp (line 1030)
In / (line 373)
In calculos (line 17)
Ec =
[ root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 1) + 400000/(2401*(root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 1)^2 + 2*root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 1))^2), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 1), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 1), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 1), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 1), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 1), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 1)]
[ root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 2) + 400000/(2401*(root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 1)^2 + 2*root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 1))^2), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 2), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 2), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 2), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 2), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 2), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 2)]
[ root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 3) + 400000/(2401*(root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 1)^2 + 2*root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 1))^2), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 3), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 3), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 3), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 3), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 3), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 3)]
[ root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 4) + 400000/(2401*(root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 1)^2 + 2*root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 1))^2), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 4), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 4), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 4), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 4), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 4), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 4)]
[ root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 5) + 400000/(2401*(root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 1)^2 + 2*root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 1))^2), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 5), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 5), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 5), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 5), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 5), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 5)]
[ root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 6) + 400000/(2401*(root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 1)^2 + 2*root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 1))^2), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 6), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 6), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 6), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 6), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 6), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 6)]
[ root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 7) + 400000/(2401*(root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 1)^2 + 2*root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 1))^2), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 7), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 7), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 7), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 7), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 7), root(z^7 + 7*z^6 + 18*z^5 + 20*z^4 + 8*z^3 - 625000/49, z, 7)]
En =
6.0647894215630416283421290892246
>>
so what I want is to get a real number 'hc' without a 'z' variable on them, I think it could be because there are no real solutions but I'm not sure, don't know how to solve that problem, don't even know what it means

Risposta accettata

Alan Stevens
Alan Stevens il 24 Lug 2020
The following gives real results.
%DATA
alfa = deg2rad(30); b = 0.14; L = b; m = L*sin(alfa); k = L*sin(alfa); pendiente = 0.001; q = 4; n = 0.011;
%FUNCTIONS
%syms h
d = @(h) b+h.*(m+k);
a = @(h) b.*h+(h.^2)*(m+k)./2;
pm = @(h) b+h.*(sqrt(1+m)+sqrt(1+k));
eta = @(h) h.*(b+h*(m+k)+2*b)./(3*(b+h*(m+k)+b));
fr = @(h) (((q.^2).*d(h))./9.8.*a(h).^3).^0.5;
fr2 = @(h) (((q.^2).*d(h))./9.8.*a(h).^3) - 1;
man = @(h) q.*n./(pendiente.^0.5) - (a(h).^(5/3))./(pm(h).^(2/3));
%SOLUTIONS
hn = fzero(man, [0 10])
hc = fzero(fr2, [0 10])
rug = eta(hn) % not sure if this is what is wanted for rug
Ec = hc + (q.^2)/((a(hc).^2)*2*9.8)
En = hn + (q.^2)/((a(hn).^2)*2*9.8)
  5 Commenti
Alexis
Alexis il 24 Lug 2020
Isn't the same
fr = @(h) (((q.^2).*d(h))./9.8.*a(h).^3).^0.5; %%wrong function
fr = @(h) (((q.^2).*d(h))./(9.8.*a(h).^3).^0.5; %%correct function
that parenthesis in 9.8 changes the function, that's why your code don't give me the correct solution and when I change it to the right way, the fzeros function don't work
thanks for all your help, going to plot it rn
Alan Stevens
Alan Stevens il 24 Lug 2020
You are right! But then you only need to change the search range slightly:
%DATA
alfa = deg2rad(30); b = 0.14; L = b; m = L*sin(alfa); k = L*sin(alfa); pendiente = 0.001; q = 4; n = 0.011;
%FUNCTIONS
%syms h
d = @(h) b+h.*(m+k);
a = @(h) b.*h+(h.^2)*(m+k)./2;
pm = @(h) b+h.*(sqrt(1+m)+sqrt(1+k));
eta = @(h) h.*(b+h*(m+k)+2*b)./(3*(b+h*(m+k)+b));
fr = @(h) ((q.^2).*d(h))./(9.8.*a(h).^3).^0.5;
fr2 = @(h) ((q.^2).*d(h))./(9.8.*a(h).^3) - 1;
man = @(h) q.*n./(pendiente.^0.5) - (a(h).^(5/3))./(pm(h).^(2/3));
%SOLUTIONS
hn = fzero(man, [0 10])
hc = fzero(fr2, [1 10])
rug = eta(hn) % not sure if this is what is wanted for rug
Ec = hc + (q.^2)/((a(hc).^2)*2*9.8)
En = hn + (q.^2)/((a(hn).^2)*2*9.8)

Accedi per commentare.

Più risposte (1)

Walter Roberson
Walter Roberson il 24 Lug 2020
Modificato: Walter Roberson il 24 Lug 2020
R = @(v) sym(v);
%DATA
alfa = R(deg2rad(30));
b = R(0.14);
L = b;
m = L*sin(alfa);
k = L*sin(alfa);
pendiente = R(0.001);
q = R(4);
n = R(0.011);
%FUNCTIONS
syms h
d = b+h.*(m+k);
g = R(9.81);
a = b.*h+(h.^R(2))*(m+k)./R(2);
pm = b+h.*(sqrt(1+m)+sqrt(1+k));
eta = h.*(b+h*(m+k)+R(2)*b)./(R(3)*(b+h*(m+k)+b));
fr = sqrt(((q.^R(2)).*d)./g.*a.^R(3));
man = q.*n./sqrt(pendiente) == (a.^(R(5)/R(3)))./(pm.^(R(2)/R(3)));
%SOLUTIONS
rug = eta;
hn = solve(man,h);
display(hn)
hc = solve(fr.^R(2)==R(1), h);
display(hc)
fprintf('hc has %d total solutions\n', length(hc));
hcr = hc;
hcr(imag(hcr)~=0) = [];
fprintf('hc has %d real-valued solutions\n', length(hcr));
if isempty(hcr)
fprintf('No real solutions for hc. Giving up\n');
else
Ec = hcr + (q.^R(2))/((subs(a,h,hcr).^R(2))*R(2)*g);
display(Ec)
En = hn + (q.^R(2))/((subs(a,h,hn).^R(2))*R(2)*g);
display(En)
end

Prodotti


Release

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by