How to calculate mean in moving cubic volume?
    4 visualizzazioni (ultimi 30 giorni)
  
       Mostra commenti meno recenti
    
I have a stack of 2D images in 3D array format 100x100x500. Now I want to select a small cubic volume of 1x1x1 at center of the stack and increase this cubic volume step by step till I reach the array size, calculating mean at each stage. I know I need to use mat2cell and mean function. How can be done in corect for loop?
0 Commenti
Risposta accettata
  Matt J
      
      
 il 25 Lug 2020
        
      Modificato: Matt J
      
      
 il 25 Lug 2020
  
      I know I need to use mat2cell and mean function.
I don't think you do. Let's call your 3D volume, V:
[ci,cj,ck]=deal(51,51,251); %center coordinate ?
[I,J,K]=ndgrid(abs((1:100)-ci),abs((1:100)-cj),abs((1:500)-ck));
L=max(max(I,J),K)+1; %label matrix
stats = regionprops3(L,V,'MeanIntensity','Volume');
cumVolumes = cumsum(stats.Volume);
cumIntensities = cumsum(stats.Volume.*stats.MeanIntensity);
result = cumIntensities ./cumVolumes
6 Commenti
  Matt J
      
      
 il 2 Ago 2020
				Something like this?
clear S
S(400)=struct('cumVolumes',[],'cumIntensities',[],'result',[]); %pre-allocate
for i = 1:400
    [ci,cj,ck]=deal(51,51,50+i); %center coordinate
    [I,J,K]= ndgrid(abs((1:100)-ci),abs((1:100)-cj),abs((i:100+i)-ck)); % Z remain 100 but changes with center
    L = max(max(I,J),K)+1; %label matrix
    stats = regionprops3(L,V(:,:[i:100+i]),'MeanIntensity','Volume');
    S(i).cumVolumes = cumsum(stats.Volume);
    S(i).cumIntensities = cumsum(stats.Volume.*stats.MeanIntensity);
    S(i).result = cumIntensities ./cumVolumes
end 
Più risposte (1)
  Amy Van Wey Lovatt
 il 11 Set 2022
        Here is another option, which I'm using to calculate contrast uptake in breast images. I'm not sure which runs faster.
function PE = PeakEnhancement(S0,S1)
% S0 is the pre-contrast phase
% S1 is phase 1 or phase 2 of the contrast, this is an NxMxP matrix. 
% sub is the initial percentage of uptake
sub=(S1-S0)./S0;
PE=zeros(size(sub));
% PeakEhnancement (PE) is the average of the 9 closest voxels in 3 x 3 x 3 cube. 
% PE is a place holder ensuring size(PE)=size(S1) and boundaryies are all zerp.
 for i=2:length(sub(:,1,1))-1
    for j=2:length(sub(1,:,1))-1
        for k=2:length(sub(1,1,:))-1
              PE(i,j,k)=mean(sub(i-1:i+1,j-1:j+1,k-1:k+1),'all'); 
        end
    end
 end
end
0 Commenti
Vedere anche
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


