Accessing Elements in a 3D matrix using Linear Indexing ?
92 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Venkata Khambhammettu
il 11 Ago 2020
Modificato: Venkata Khambhammettu
il 12 Ago 2020
Hello,
I would like to know if it is possible to access the individual element of a 3D matrix of size M*N*P using linear indexing?
0 Commenti
Risposta accettata
Bruno Luong
il 11 Ago 2020
Modificato: Bruno Luong
il 11 Ago 2020
Given sz = [m,n,p] ans linidx is the linear index of an element, here is one way of computing the subindexes (row, col, page). This works also for generic nd-array.
sz = [m,n,p];
tmp = linidx-1;
nd = max(length(sz),2);
subidx = zeros(1,nd);
for k=1:nd
subk = mod(tmp, sz(k));
subidx(:,k) = subk;
tmp = (tmp-subk) / sz(k);
end
subidx = subidx+1;
You can also see TMW implementation by
>> edit ind2sub
Più risposte (2)
Image Analyst
il 11 Ago 2020
Yes, it's possible but you'd need 3 dimensions for the linear array, not 2. So not M-by-N but rows-by-columns-by-slice.
[rows, columns, slices] = size(your3DArray);
mask = whatever; % Needs to be a "rows by columns by slices" 3-D array.
your3DArray(mask) = whateverYouWant;
5 Commenti
Steven Lord
il 11 Ago 2020
You can work backwards.
First, which page contains 20? It can't be the first, because that only contains linear indices 1 through 12. We know this because the size of the array in the first two dimensions is [3 4]. So we know that element 20 is at subscripts (?, ?, 2).
Now we subtract off 12 to find the linear index of the corresponding element in the first page of a matrix. Now we're trying to find the row and column indices in a 3-by-4 matrix corresponding to linear index 8. It can't be in the first column (linear indices 1-3) or the second (4-6) so we know it's in the third column, at (?, 3, 2).
We subtract off 6 to find the linear index of the corresponding element in the first column. This tells us that a linear index of 20 in a 3-by-4-by-2 array corresponds to the element at subscripts (2, 3, 2).
I've done this handwavingly, but you can formalize it using remainders (rem) as ind2sub does.
Sudheer Bhimireddy
il 11 Ago 2020
A = rand(10,10,10);
B = A(1:2,1:2,1:2); %<- indexing the first two values in all dimensions so it creates a 2x2x2 matrix
C = A(1,1,1); %<- indexing the first value in all dimensions so it points to a single value
4 Commenti
Image Analyst
il 11 Ago 2020
Not sure how you deduced that. Of course it does work. You just want to know "how MatLab able to use linear indexing to calculate the location of an element in a 3D matrix." and it's in column major order, basically by iterating the left most index first, then the second index, then finally the third index the slowest.
Stephen23
il 11 Ago 2020
Modificato: Stephen23
il 11 Ago 2020
"So the concept of Linear Indexing doesn't work for 3D matrices ?"
Of course linear indexing works with 3D arrays, just as the documentation that I linked to clearly states: "Another method for accessing elements of an array is to use only a single index, regardless of the size or dimensions of the array. This method is known as linear indexing" (bold added).
This answer does not show any linear indexing though, so it is unrelated to your question.
Vedere anche
Categorie
Scopri di più su Matrix Indexing in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!