Symbolic Derivative in matlab

4 visualizzazioni (ultimi 30 giorni)
HN
HN il 17 Ago 2020
Modificato: HN il 18 Ago 2020
Can matlab diffrentiate F with respect to θ , ϕ and ψ only ?.
Any help is apperciated

Risposta accettata

KSSV
KSSV il 17 Ago 2020
You can carry on symbolic calculations. Read about diff.
  7 Commenti
KSSV
KSSV il 18 Ago 2020
syms A B C t th
R = -A*(cos(t)-cos(t))+B*cos(th)*sin(t);
S = A*sin(t)*sin(t)-B*cos(t)+C*cos(t);
phi=atan(R/S)
HN
HN il 18 Ago 2020
Modificato: HN il 18 Ago 2020
Why running on live script and script gives different result for the same expression?
syms syms t phi(t) theta(t) psi(t) dphi dtheta dpsi rp L alpha beta
x=rp*sin(alpha)*(cos(theta)*sin(phi) - cos(phi)*sin(psi)*sin(theta)) - rp*cos(alpha)*(cos(phi)*cos(theta) + sin(phi)*sin(psi)*sin(theta)) + (rp*cos(psi)*(sin(alpha + phi) - sin(phi)))/tan(alpha)
diff(x, t)
using matlab mlx and matlab script. Both gives different result
mlx gives
vx=rp*cos(psi(t))*cos(theta(t))*sin(phi(t))*sin(alpha) - rp*cos(phi(t))*cos(psi(t))*cos(theta(t))*cos(alpha)
while running on matlab script gives
vx=((rp*cos(psi(t))*(cos(alpha + phi(t)) - cos(phi(t)))*diff(phi(t), t))/tan(alpha) - rp*sin(alpha)*(sin(phi(t))*sin(theta(t))*diff(theta(t), t) - cos(phi(t))*cos(theta(t))*diff(phi(t), t) + cos(phi(t))*cos(psi(t))*sin(theta(t))*diff(psi(t), t) + cos(phi(t))*cos(theta(t))*sin(psi(t))*diff(theta(t), t) - sin(phi(t))*sin(psi(t))*sin(theta(t))*diff(phi(t), t)) - rp*cos(alpha)*(cos(phi(t))*sin(psi(t))*sin(theta(t))*diff(phi(t), t) - cos(phi(t))*sin(theta(t))*diff(theta(t), t) - cos(theta(t))*sin(phi(t))*diff(phi(t), t) + cos(psi(t))*sin(phi(t))*sin(theta(t))*diff(psi(t), t) + cos(theta(t))*sin(phi(t))*sin(psi(t))*diff(theta(t), t)) - (rp*sin(psi(t))*(sin(alpha + phi(t)) - sin(phi(t)))*diff(psi(t), t))/tan(alpha))

Accedi per commentare.

Più risposte (0)

Categorie

Scopri di più su Symbolic Math Toolbox in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by