How do I use muller method for solving multivariable equations?

10 visualizzazioni (ultimi 30 giorni)
I have two equations of 2 variables. I tried using 'solve' but it keeps on calculating for hours together with no results. I would like to use Muller method as I have used it before and I can define start points and number of iterations. I can also check the residual value. Can anyone please suggest, how can I use Muller for solving multivariable equations?
  2 Commenti
Alan Stevens
Alan Stevens il 20 Ago 2020
Easier to do this if we know what your equations are.
Shreya Menon
Shreya Menon il 23 Ago 2020
Sorry... The equations are:
1.) (epir*(diff(besselj(1,V))/(V*k0a*besselj(1,V)))-(diff(besselk(1,W))/(W*k0a*besselk(1,W))))*(mewr*(diff(besselj(1,V))/(V*k0a*besselj(1,V)))-(diff(besselk(1,W))/(W*k0a*besselk(1,W))))=((V^2+W^2)*(V^2+mewr*epir*W^2))/(V^4*W^4*k0a^4)
2.) ((2*(b+L*tand(alpha))/lambda0)^2)*(pi^2)*(mewr*epir-1)==(V^2+W^2)*k0a^2
V and W is to be found. These are equations for propagation characteristics of solid dielectric rod antenna. Kindly help in this regard.

Accedi per commentare.

Risposte (1)

Alan Stevens
Alan Stevens il 24 Ago 2020
Modificato: Alan Stevens il 24 Ago 2020
I guess there are a few options.
  1. If you have the Opimisation toolbox, use fsolve.
  2. In your second equation replace V^2 + W^2 by, say, Rsq and solve for Rsq. Then express V as a function of W, knowing Rsq. Then use fzero to find W. The code structure might look something like the following (I'm unable to test it because I don't have your constants).
Rsq = ((2*(b+L*tand(alpha))/lambda0)^2)*(pi^2)*(mewr*epir-1)/k0a^2;
Vfn = @(W) sqrt(Rsq - W.^2);
W0 = ....; % Insert your initial guess
W = fzero(@Wfn, W0);
V = Vfn(W);
function WW = Wfn(W)
V = Vfn(W);
WW = (epir*(diff(besselj(1,V))/(V*k0a*besselj(1,V))) ...
-(diff(besselk(1,W))/(W*k0a*besselk(1,W))))*(mewr*(diff(besselj(1,V))/(V*k0a*besselj(1,V))) ...
-(diff(besselk(1,W))/(W*k0a*besselk(1,W))))-((V^2+W^2)*(V^2+mewr*epir*W^2))/(V^4*W^4*k0a^4);
end
3. An alternative to using fzero with option 2 is to program the Muller method yourself. However, I suspect fzero is the better option.
  5 Commenti
Alan Stevens
Alan Stevens il 26 Ago 2020
Ah, fzero only deals with real numbers I'm afraid. I guess you need to look at the Optimisation toolbox.

Accedi per commentare.

Categorie

Scopri di più su Polynomials in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by