- Is this a homework assignment?
- Is the only requirement that the six parts have equal area? I'm wary of other assumptions you may be neglecting to mention. For example, would it be ok to just make vertical slices? Or do you need to find a single point in the interior, such that lines to the vertices separate the area equally?
How to split a polygon.
    17 visualizzazioni (ultimi 30 giorni)
  
       Mostra commenti meno recenti
    
    Carlos Zúñiga
 il 31 Ago 2020
  
    
    
    
    
    Commentato: Bruno Luong
      
      
 il 31 Ago 2020
            Hello everyone. 
If I have a polygon with the following coordinates:
x=[0 4 7 5 1];    %Polygon x-coordinates
y=[0 -2 0 10 8]; %Polygon y-coordinates
How can I split the polygon formed by the coordinates shown bellow in for example six parts which area is equal to each other? 
2 Commenti
  the cyclist
      
      
 il 31 Ago 2020
				Two questions before anyone spends time thinking about this:
Risposta accettata
  Bruno Luong
      
      
 il 31 Ago 2020
        
      Modificato: Bruno Luong
      
      
 il 31 Ago 2020
  
      Each slice has area of 9.5
x=[0 4 7 5 1];    %Polygon x-coordinates
y=[0 -2 0 10 8]; %Polygon y-coordinates
n = 6;
P = polyshape(x,y);
A = P.area/n;
xmin = min(x); xmax = max(x);
ymin = min(y); ymax = max(y);
x0 = xmin+0.01;
b = zeros(1,n-1);
Q = cell(1,n);
Qk = polyshape(); % empty
for k=1:n-1
    x0 = fzero(@(x) areafun(P, xmin, x, ymin, ymax)-k*A, x0);
    b(k) = x0;
    Qp = Qk;
    [s, Qk] = areafun(P, xmin, b(k) , ymin, ymax);
    Q{k} = subtract(Qk, Qp);
end
Q{n} = subtract(P, Qk);
close all;
figure
hold on
for k=1:n
    Q{k}.area
    plot(Q{k});
end
axis equal
function [s, Q] = areafun(P, xmin, xmax, ymin, ymax)
R = polyshape([xmin xmax xmax xmin],[ymin ymin ymax ymax]);
Q = intersect(P,R);
s = Q.area;
end

6 Commenti
  Bruno Luong
      
      
 il 31 Ago 2020
				Star-like partitioning
x=[0 4 7 5 1];    %Polygon x-coordinates
y=[0 -2 0 10 8]; %Polygon y-coordinates
n = 6;
P = polyshape(x,y);
A = P.area/n;
xmin = min(x); xmax = max(x);
ymin = min(y); ymax = max(y);
b = zeros(1,n-1);
Q = cell(1,n);
[xc,yc] = P.centroid;
r = sqrt(max((x-xc).^2+(y-yc).^2))*1.1;
Qk = polyshape(); % empty
x0 = 2*pi/n;
for k=1:n-1
    x0 = fzero(@(tt) areafun(P, xc, yc, tt, r)-k*A, x0);
    b(k) = x0;
    Qp = Qk;
    [s, Qk] = areafun(P, xc, yc, x0, r);
    Q{k} = subtract(Qk, Qp);
end
Q{n} = subtract(P, Qk);
close all;
figure
hold on
for k=1:n
    Q{k}.area
    plot(Q{k});
end
axis equal
function [s, Q] = areafun(P, xc, yc, tt, r)
ntt = max(ceil(abs(tt)*128),2);
phi = linspace(0,tt,ntt);
Q = polyshape([xc xc+r*cos(phi)],[yc yc+r*sin(phi)]);
Q = intersect(P,Q);
s = sign(tt)*Q.area;
end

Più risposte (0)
Vedere anche
Categorie
				Scopri di più su Interpolation in Help Center e File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


