Solving 4th order ode using ode45
9 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Elayarani M
il 15 Set 2020
Commentato: Elayarani M
il 26 Set 2020
How to solve the following 4th order ode using ode45 solver
3 Commenti
Bjorn Gustavsson
il 15 Set 2020
...and aren't you missing one boundary-value?
@madhan - perhaps just as "easy" to use shooting method to find a solution that trails of towads flat at infinity?
Risposta accettata
Alan Stevens
il 15 Set 2020
Here's some coding that basically solves the equation. I've no idea what the value of k should really be, but the constants chosen give a consistent result. The choice of f'''(0) is based on the original equation with the other x=0 values plugged in; where f''(0) is a chosen to give a seemingly reasonable result!
k = -0.002;
xspan = [0 100];
d2fdx20 = -1;
F0 = [0 1 d2fdx20 (1-k*(d2fdx20^2))/(1-2*k)];
[x, F] = ode45(@rates, xspan, F0, [], k);
f = F(:,1);
dfdx = F(:,2);
plot(x, f, x, dfdx),grid
xlabel('x'), ylabel('f and dfdx')
legend('f','dfdx')
function dFdx = rates(x,F,k)
f = F(1);
dfdx = F(2);
d2fdx2 = F(3);
d3fdx3 = F(4);
if x==0
d4fdx4 = 0;
else
d4fdx4 = (d3fdx3 +f.*d2fdx2 - dfdx.^2 - 2*k*dfdx.*d3fdx3 + k*d2fdx2.^2)./(k*f);
end
dFdx = [dfdx; d2fdx2; d3fdx3; d4fdx4];
end
23 Commenti
Bjorn Gustavsson
il 25 Set 2020
Did the numerical solution differ by much? If not then perhaps only numerical deviations? Since you have a non-linear ODE there might be many solutions (right?), have you gotten all analytically? If not then the numerical solution might be one of the other valid solutions.
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Ordinary Differential Equations in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!