Non traceable loss function in neural network
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
Pere Garau Burguera
il 25 Set 2020
Risposto: Divya Gaddipati
il 15 Ott 2020
Hi,
I would want to know if there's any possibility of having a loss function that looks like this:
This is used in a siamese network for metric learning. There are 2 identical networks with the same weights, where the Xs are the inputs and Y are the outputs. The thing is that the operations performed on the dlarrays are not permitted so the gradients cannot be computed.
Is there an alternative way to make this work?
function loss = lossfunc(Y1,Y2,X1,X2,dist)
% accepts the network's predictions Y1, Y2, the inputs
% X1, X2, and the true distance between X1 and X2, and returns the loss value.
loss = .5*((X1-X2)'*pinv(Y1*Y1')*(X1-X2)...
+ (X1-X2)'*pinv(Y2*Y2')*(X1-X2))...
-dist^2);
end
0 Commenti
Risposta accettata
Divya Gaddipati
il 15 Ott 2020
Currently, pinv is not supported for dlarray inputs.
Alternatively, you could try replacing the function with their own logic using the functions in the below link that are supported by dlarray.
0 Commenti
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Image Data Workflows in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!