Portfolio Optimization with LASSO

17 visualizzazioni (ultimi 30 giorni)
ANDREA MUZI
ANDREA MUZI il 12 Ott 2020
Risposto: ANDREA MUZI il 12 Ott 2020
I have to find the optimal portfolio adding the "l-1 norm" constraint to the classical mean-variance model. How can i write this optimization in matricial form ?

Risposte (2)

Ameer Hamza
Ameer Hamza il 12 Ott 2020
Modificato: Ameer Hamza il 12 Ott 2020
This shows an example for the case of 5 portfolios
mu = rand(1, 5);
eta = 0.5;
Sigma = ones(5);
Aeq = [mu; ones(1, 5)];
Beq = [eta; 1];
x0 = rand(5,1); % initial guess
sol = fmincon(@(x) x.'*Sigma*x, x0, [], [], Aeq, Beq, [], [], @nlcon);
function [c, ceq] = nlcon(x)
c = sum(abs(x))-1;
ceq = [];
end
  4 Commenti
ANDREA MUZI
ANDREA MUZI il 12 Ott 2020
equal to eta
Ameer Hamza
Ameer Hamza il 12 Ott 2020
Then the code in my answer satisfies all the constraints. You can verify
mu = rand(1, 5);
eta = 0.5;
Sigma = ones(5);
Aeq = [mu; ones(1, 5)];
Beq = [eta; 1];
x0 = rand(5,1); % initial guess
sol = fmincon(@(x) x.'*Sigma*x, x0, [], [], Aeq, Beq, [], [], @nlcon);
function [c, ceq] = nlcon(x)
c = sum(abs(x))-1;
ceq = [];
end
Results
>> mu*sol % output is eta
ans =
0.5000
>> sum(sol) % sum is 1
ans =
1
>> sum(abs(sol)) % sum of absolute values is 1
ans =
1

Accedi per commentare.


ANDREA MUZI
ANDREA MUZI il 12 Ott 2020
I thank you but it is not the result I expected; I try to rephrase the question. I found a way to linearize the constraint on the weights norm (photo). Basically I have to find the vector between tmin and tmax, in which tmin penalizes all the weights of the assets, bringing them to zero, except one whose weight will be equal to 1 and tmax, whose value will not penalize any asset

Categorie

Scopri di più su Linear Programming and Mixed-Integer Linear Programming in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by