Invalid training data. The output size (2) of the last layer does not match the number of classes (6).
22 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
% TRAIN THE IMAGE
layers =[imageInputLayer([90 120 1])
%CONVOLUTION FILTER
convolution2dLayer(5,20)
reluLayer
%GET MAXIMUM VALUE FROM LAYER
maxPooling2dLayer(2,'stride',2)
%CONVOLUTION FILTER
convolution2dLayer(5,20)
reluLayer
%GET MAXIMUM VALUE FROM LAYER
maxPooling2dLayer(2,'stride',2)
fullyConnectedLayer(2)
softmaxLayer
classificationLayer()]
%% CLASSIFICATION
im = imresize(im,[90,120]);
options=trainingOptions('sgdm','MaxEpochs',15,'initialLearnRate',0.0001);
convnet=trainNetwork(Data,layers,options);
output=classify(convnet,im);
tf1=[];
for ii=1:2
st=int2str(ii);
tf=ismember(output,st);
tf1=[tf1 tf];
end
output=find(tf1==1);
0 Commenti
Risposte (1)
Athul Prakash
il 20 Ott 2020
Hi Aswin,
The number of outputs from your network would be determined by the last fullyConnectedLayer you have used. Since it has 2 neurons, the final output from the classificationLayer would also have 2.
If you want to classify into 6 categories, you may use fullyConnectedLayer(6) instead.
Hope it helps!
0 Commenti
Vedere anche
Categorie
Scopri di più su Image Data Workflows in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!