optimization problem using exhaustive search algorithm with one inequality constraints
2 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
i have to find the optimum x that minimize the following F(x)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/388493/image.png)
subject to next inequality constraint
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/388498/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/388503/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/388508/image.png)
Prop = [250,2000,1204,2147,1761,4500]
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/388518/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/388523/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/388528/image.png)
how to pass the inequality constarint to exhaustive search algorithm
% step 1: Write all X possible values in an array
x_Array = [0.3; 0.209688258; 0.373920838; 0.306695201; 0.888214381;
0.044474885; 0.106739724; 0.476537568; 0.453975631; 0.386749994; 0.968269174
0.9; 0.378544753; 0.675029556; 0.553668863];
% step 2: creat an exhaustive searcher object MdlES
MdlES = ExhaustiveSearcher(x_Array)
% Step 3: define Parameters
a=56.3772;
b=-75.1591;
c= 203.3442;
Prop = [250,2000,1204,2147,1761,4500];
J =6;
x = ones(1,J);
P = 6000
% Step 4: Objective Function
SFOC = a * x.^2 + b* x + c *ones(1,J)
Y = SFOC';
% step 5: Applay inequality constraint
Prop - P * x =< 0
% Step 6: creat function for Exhaustive search Algorithm
IdxES = knnsearch(MdlES,Y)
for j = 1:J
x(j) = x_Array(IdxES(j))
end
0 Commenti
Risposte (1)
Vedere anche
Categorie
Scopri di più su Direct Search in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!