Azzera filtri
Azzera filtri

What is wrong with my for loop?

1 visualizzazione (ultimi 30 giorni)
Kyle McLaughlin
Kyle McLaughlin il 28 Ott 2020
Commentato: madhan ravi il 29 Ott 2020
%check for stitching global nxn matrix
elements = 4;
nodes = 5; %nodes
s=3; %size of matrix nxn
k=[1 1 1; 1 1 1; 1 1 1];
size = (s* elements) - (elements-1);
K = zeros(size,size);
K(1:s,1:s) = k(1:s,1:s);
%this fills the matrix with values
for i =2:elements-1
% K((s:((i*s)-(i-1))), (s:((i*s)-(i-1)))) = k(1:s,1:s);
for j = 1:elements-1
K((j*s-j-1):(i*s-i-1), (j*s-j-1):(i*s-i-1)) = k(1:s,1:s);
end
% K((s:((2*s)-(2-1))), (s:((2*s)-(2-1)))) = k(1:s,1:s);
% K((s:((3*s)-(3-1))), (s:((3*s)-(3-1)))) = k(1:s,1:s);
%K(s:((j*s)-(j-1)),s:((j*s)-(j-1))) = k(1:s,1:s);
% K(s:5,s:5) = k(1:s,1:s);
% K(5:7,5:7) = k(1:s,1:s);
% K(7:9,7:9) = k(1:s,1:s);
end
%this adds matrix elements at stitching location
for i = 1:elements-1
K(((i*s)-(i-1)), ((i*s)-(i-1))) = k(1,1)+k(s,s);
end
K
the lines including K(s:5,s:5) to K(7:9,7:9) was my verification to see if the matrix was right and it is. the code above in the for loops should give me the same answers as these but I keep getting an error saying unable to perform assignment because the size of the left matrix doesnt match the right
this is the error I recieve:
Unable to perform assignment because the size of the left side is 1-by-1 and the size of the right side is
3-by-3.
  4 Commenti
Kyle McLaughlin
Kyle McLaughlin il 28 Ott 2020
I deleted it to post it correctly so there would be no further confusion
Kyle McLaughlin
Kyle McLaughlin il 29 Ott 2020
Modificato: Kyle McLaughlin il 29 Ott 2020
I was able to come up with the following code which is closer to what I want but doesnt quite fit:
elements = 4;
nodes = 5; %nodes
s=3; %size of matrix nxn
k=[1 1 1; 1 1 1; 1 1 1];
size = (s* elements) - (elements-1);
K = zeros(size,size);
%K(1:s,1:s) = k(1:s,1:s);
for j = 2:elements
for ii = 0: elements -2
%K(j*s-s+ii*(s-1):j*s-1+ii*(s-1), j*s-s+ii*(s-1):j*s-1+ii*(s-1)) = k(1:s,1:s);
%K(j*s-s-1:j*s-1, j*s-s-1:j*s-1) = k(1:s,1:s);
K(j*s-s-ii:j*s-1-ii,j*s-s-ii:j*s-1-ii)= k(1:s,1:s);
end
end
%K(size-s+1:size,size-s+1:size) = k(1:s,1:s);
for i = 1:elements-1
K(((i*s)-(i-1)), ((i*s)-(i-1))) = k(1,1)+k(s,s);
end
K
K =
1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0
1 1 2 1 1 0 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0 0
0 0 1 1 2 1 1 0 0 0 0
0 0 0 1 1 1 1 1 0 0 0
0 0 0 0 1 1 2 1 1 0 0
0 0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1

Accedi per commentare.

Risposta accettata

Kyle McLaughlin
Kyle McLaughlin il 29 Ott 2020
elements = 4;
s=3; %size of matrix nxn
k=[1 1 1; 1 1 1; 1 1 1];
length = (s* elements) - (elements-1);
K = zeros(length,length);
for j = 0:elements-1
index =(1:s);
n = index + j*(s-1);
K(n,n) = k(1:s,1:s);
end
for i = 1:elements-1
K(((i*s)-(i-1)), ((i*s)-(i-1))) = k(1,1)+k(s,s);
end
K
This does exactly what I want I answered my own question nevermind. Here it is for reference.
  3 Commenti
Kyle McLaughlin
Kyle McLaughlin il 29 Ott 2020
Excuse me, clearly i didnt see any answer you posted which is why it was deleted. Sorry you didnt answer my question and get an accepted answer. I am aware of how it works now, dont beat a dead horse.
madhan ravi
madhan ravi il 29 Ott 2020
Lol, good luck

Accedi per commentare.

Più risposte (1)

Matt J
Matt J il 28 Ott 2020
Modificato: Matt J il 28 Ott 2020
It seems clear that when i=j, the left hand side of
K((j*s-j-1):(i*s-i-1), (j*s-j-1):(i*s-i-1)) = k(1:s,1:s);
will be 1x1 whereas the right hand side will always be 3x3. Generally speaking, the size of the left hand side is changing in a highly i,j-dependent way whereas the right hand side is not.
  3 Commenti
Matt J
Matt J il 29 Ott 2020
I'm not sure what you are trying to achieve. If the idea is just to make tiled copies of k, then youcould just use repmat
K=repmat(k,elements,elements)
Kyle McLaughlin
Kyle McLaughlin il 29 Ott 2020
Modificato: Kyle McLaughlin il 29 Ott 2020
This is the begining of an FEA script, the code that I am writing here assembles the global stiffness matrix from the element matricies. I need to apply this to the mass matrix and damping matrix for nxn size so that it is modular in the event of different sized element matrixies for given element types. The goal is to add the first and lass matrix values which creates the nodal connection between the two elements and apply that to the lot of them. The first comment I made in the post, directly under my question, shows the desired results of the matrix.

Accedi per commentare.

Categorie

Scopri di più su Loops and Conditional Statements in Help Center e File Exchange

Prodotti


Release

R2018a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by