I tried to solve this system of ODE and it took so long to give me results.
2 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
function [xprime] = CRungeKutta1(t,x)
r=sqrt(x(1)^2+x(2)^2);
while (2<r & r<=2.01)
A=(16.3096-7.1548*r)/r;
L=-log(r-2);
B=2*(0.4056*L^2+1.49681*L-1.9108)/(r*(L^2+6.0425*L+6.32549));
end
while (2.01<r & r<2.5)
A=-4.3833+17.7176*r^-1+14.8204*r^-2-92.4471*r^-3-46.3151*r^-4+232.2304*r^-5;
B=-3.1918+12.3641*r^-1+11.4615*r^-2-65.2926*r^-3-36.4909*r^-4+154.8074*r^-5;
end
if (r>=2.5)
A=5*r^-3-8*r^-5+25*r^-6-35*r^-8+125*r^-9-102*r^-10+12.5*r^-11+430*r^-12;
B=(1/3)*(16*r^-5+10*r^-8-36*r^-10-25*r^-11-36*r^-12);
end
e=x(1).*x(2).*(B-A)/r.^2;
xprime=[x(2)+e.*x(1)-0.5*B.*x(2); e.*x(2)-0.5*B.*x(1)];
end
I type on command window
X0=[-10,0.2]
tspan=[0:0.1:200]
[t,x]=ode45(@CRungeKutta1,tspan,X0)
I tried to solve this system of ODE but it takes so long to do it. Anybody can tell me why? Please helps . Thanks
0 Commenti
Risposta accettata
ChristianW
il 13 Mar 2013
Pretty sure your function hang up in the while loops. I guess it should be IF instead of WHILE.
while 2<r
This is an endless loop because you are not changing r in the loop.
5 Commenti
ChristianW
il 13 Mar 2013
Modificato: ChristianW
il 13 Mar 2013
If your radius is r<=2 then you put r=2. Then L become inf because of log(0). Then B becomes NaN.
I don't know your system, but if the radius r can't be smaller then 2, then you may need a event function. For an example, check out:
ballode
open ballode
odeexamples
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Ordinary Differential Equations in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!