Need FFT Code for Matlab (not built in)

123 visualizzazioni (ultimi 30 giorni)
John
John il 15 Mar 2013
Commentato: Marco Marcon il 28 Apr 2024
Does anyone have FFT code for Matlab? I don't want to use the built-in Matlab function.
  5 Commenti
John
John il 15 Mar 2013
Okay I am looking for the O(n log n) algorithm for DFT then =)
Yasin Arafat Shuva
Yasin Arafat Shuva il 19 Lug 2021
Modificato: Rik il 19 Lug 2021
clear variables
close all
%%Implementing the DFT in matrix notation
xn = [0 2 4 6 8]; % sequence of x(n)
N = length(xn); % The fundamental period of the DFT
n = 0:1:N-1; % row vector for n
k = 0:1:N-1; % row vecor for k
WN = exp(-1i*2*pi/N); % Wn factor
nk = n'*k; % creates a N by N matrix of nk values
WNnk = WN .^ nk; % DFT matrix
Xk = xn * WNnk; % row vector for DFT coefficients
disp('The DFT of x(n) is Xk = ');
disp(Xk)
magXk = abs(Xk); % The magnitude of the DFT
%%Implementing the inverse DFT (IDFT) in matrix notation
n = 0:1:N-1;
k = 0:1:N-1;
WN = exp(-1i*2*pi/N);
nk = n'*k;
WNnk = WN .^ (-nk); % IDFS matrix
x_hat = (Xk * WNnk)/N; % row vector for IDFS values
disp('and the IDFT of x(n) is x_hat(n) = ');
disp(real(x_hat))
% The input sequence, x(n)
subplot(3,1,1);
stem(k,xn,'linewidth',2);
xlabel('n');
ylabel('x(n)')
title('plot of the sequence x(n)')
grid
% The DFT
subplot(3,1,2);
stem(k,magXk,'linewidth',2,'color','r');
xlabel('k');
ylabel('Xk(k)')
title('DFT, Xk')
grid
% The IDFT
subplot(3,1,3);
stem(k,real(x_hat),'linewidth',2,'color','m');
xlabel('n');
ylabel('x(n)')
title('Plot of the inverse DFT, x_{hat}(n) = x(n)')
grid

Accedi per commentare.

Risposte (4)

Youssef  Khmou
Youssef Khmou il 15 Mar 2013
hi John
Yes there are many versions of Discrete Fourier Transform :
% function z=Fast_Fourier_Transform(x,nfft)
%
% N=length(x);
% z=zeros(1,nfft);
% Sum=0;
% for k=1:nfft
% for jj=1:N
% Sum=Sum+x(jj)*exp(-2*pi*j*(jj-1)*(k-1)/nfft);
% end
% z(k)=Sum;
% Sum=0;% Reset
% end
% return
this is a part of the code , try my submission it contains more details :
  4 Commenti
Abdullah Khan
Abdullah Khan il 28 Nov 2013
Modificato: Abdullah Khan il 28 Nov 2013
This is also DFT
The complexity of the code is still N x N
because
% nfft=2^ceil(log2(N)) = nfft (on upper DTFT code )
or
% 2^ceil(log2(N))= N
Walter Roberson
Walter Roberson il 6 Set 2017
"FFT" stands for "Fast Fourier Transform", which is a particular algorithm to make Discrete Fourier Transform (DFT) more efficient.

Accedi per commentare.


Tobias
Tobias il 11 Feb 2014
Modificato: Walter Roberson il 6 Set 2017
For anyone searching an educating matlab implementation, here is what I scribbled together just now:
function X = myFFT(x)
%only works if N = 2^k
N = numel(x);
xp = x(1:2:end);
xpp = x(2:2:end);
if N>=8
Xp = myFFT(xp);
Xpp = myFFT(xpp);
X = zeros(N,1);
Wn = exp(-1i*2*pi*((0:N/2-1)')/N);
tmp = Wn .* Xpp;
X = [(Xp + tmp);(Xp -tmp)];
else
switch N
case 2
X = [1 1;1 -1]*x;
case 4
X = [1 0 1 0; 0 1 0 -1i; 1 0 -1 0;0 1 0 1i]*[1 0 1 0;1 0 -1 0;0 1 0 1;0 1 0 -1]*x;
otherwise
error('N not correct.');
end
end
end
  4 Commenti
Siddhant Sharma
Siddhant Sharma il 2 Nov 2020
can anyone explain X equal to (Xp-tmp)?
Marco Marcon
Marco Marcon il 28 Apr 2024
The total length of the final X will be N.
The first values will be given by + (remember that , and have length elements and both , are periodic of ); it can be written as for , where .
While the last values will be given by for .
Since we can get the second part of X(last values) as:
that is the reason for adding tmp in the first vector part and subtracting it in the second part.

Accedi per commentare.


Jan Afridi
Jan Afridi il 6 Set 2017
Modificato: Jan Afridi il 6 Nov 2017
I think I can answer your question. Check the given link may be it will help you. And if you found any error then please inform me... check the link Matlab code for Radix 2 fft
  1 Commento
Jan Suchánek
Jan Suchánek il 6 Dic 2018
Hello i would like to ask you what had to be different if you would like to use it for harmonical function.
I tried to implement your solution but it was working only for random vectors but not for any type of harmonical.
i was using this for the harmonical function.
______________________
t2=0:1:255;
h1=sin(t2);
x=h1;
X11 = myFFT(x);
______________________
it gave me this error:
Error using *
Inner matrix dimensions must agree.
Error in myFFT (line 18)
X = [1 0 1 0; 0 1 0 -1i; 1 0 -1 0;0 1 0 1i]*[1 0 1 0;1
0 -1 0;0 1 0 1;0 1 0 -1]*x;
Error in myFFT (line 7)
Xp = myFFT(xp);
Error in myFFT (line 7)
Xp = myFFT(xp);
Error in myFFT (line 7)
Xp = myFFT(xp);
Error in myFFT (line 7)
Xp = myFFT(xp);
Error in myFFT (line 7)
Xp = myFFT(xp);
Error in myFFT (line 7)
Xp = myFFT(xp);
Error in ZBS_projekt (line 246)
X11 = myFFT(x);

Accedi per commentare.


Ryan Black
Ryan Black il 11 Mar 2019
Modificato: Ryan Black il 26 Ago 2020
Function I wrote that optimizes the DFT or iDFT for BOTH prime and composite signals...
The forward transform is triggered by -1 and takes the time-signal as a row vector:
[Y] = fftmodule(y,-1)
The inverse transform auto-normalizes by N, is triggered by 1 and takes the frequency-signal as a row vector:
[y] = fftmodule(Y,1)
Methodology:
The algorithm decimates to N's prime factorization following the branches and nodes of a factor tree. In formal literature this may be referred to as Mixed Radix FFT, but its really just recursive decimation of additive groups and this method is easily derivable via circular convolutions :)
At the prime tree level, algorithm either performs a naive DFT or if needed performs a single Rader's Algorithm Decomposition to (M-1), zero-pads to power-of-2, then proceeds to Rader's Convolution routine (not easy to derive). Finally it upsamples through the origianlly strucutured nodes and branches incorporating twiddle factors for the solution.

Tag

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by