How to find relevent principal component .
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
Hi,
I am trying to do PCA analysis on featurevector size 30x17600, where 30 is the number of images and 17600 is the number of coffecients.
How can I find how many principal componts are requied for corect represtntaion of data.
[M N]=size(feature_vector'); m=mean(feature_vector',2); m_adj = feature_vector' - repmat(double(m),1,N); [evectors, score, evalues] = princomp(feature_vector','econ');
How to find the revelent pricomponent for multiplying with mean adujsted data
feature_vector_final=feature_vector'*evectors;
Please help me.
Thanks in advance
0 Commenti
Risposta accettata
Conrad
il 27 Mar 2013
Calculate the quantity:
cumsum(evalues)./sum(evalues)
The will show you the cumulative variance explained by keeping the first n components. You can also look at the following plot (called a scree plot):
xOffset = -0.2;
yOffset = 2;
nComponentsToShow = 5;
figure; hold on;
p(1) = bar(1e2*evalues(1:nComponentsToShow)/sum(evalues));
ylabel('Variance explained (%)');
xlabel('Factor');
set(p(1),'FaceColor','Black');
set(gca,'XTick',1:size(evalues,1));
for i = 1 : nComponentsToShow
text(i+xOffset,1e2*evalues(i)/sum(evalues)+yOffset,sprintf...
('%0.2f%%',1e2*sum(evalues(1:i))/sum(evalues)));
end
Looking at the total variance explained you can decide on how many components to keep.
Conrad
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Dimensionality Reduction and Feature Extraction in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!