neural network with bayesian regularization: find weights and biases and recalculate the network
2 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Michael Arnold
il 11 Dic 2020
Modificato: Michael Arnold
il 15 Dic 2020
Hey,
i´m trying to use a neural network to guess functional values for unknown points. This is my current solution.
%target f(x)=(x^2 + 22*x - 100)/(4*x)
%for x = [2,9]
inputall = 2:0.01:9;
outputall = (inputall.^2+22*inputall-100)./(4*inputall);
%training data
inputtrain = 2:1:9;
outputtrain = (inputtrain.^2+22*inputtrain-100)./(4*inputtrain);
%neural network
neurons = 5;
net = feedforwardnet(neurons,'trainbr');
net = train(net,inputtrain,outputtrain);
%prediction
predict(1,:) = net(inputall);
%comparison
comp = [outputall' predict']
%visualization
figure('Name','comparison'); hold on;
plot(inputall,outputall);
plot(inputall,predict)
Now I want to know what weights and biases the network finaly used. How can i get them and is it possible to use them to recalculate by myself the solution of the network?
Best regards
Michael
0 Commenti
Risposta accettata
Sai Veeramachaneni
il 15 Dic 2020
Hi,
You can use net.IW, net.LW, net.b properties of neural network object to get weights and biases used in the network.
References:
1 Commento
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Sequence and Numeric Feature Data Workflows in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!