How can I integrate a function?
3 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
I have this numerical integration function:
function I = integrate(f, a, b, n)
h =(b-a)/n;%interval size
I=0;
for i=1:n %loop for the rest of the calculations
p1 =(a+((i-1)*h)) + (h/4) ;
m = ((a+((i-1)*h)) + (a+(i*h)))/2;
p2 =(a+(i*h))- (h/4);
I = I + (h/3)*((2*f(p1))-f(m)+(2*f(p2)));
end
end
I want to calculate the function f= @(x,N)x.^N when N = 1, N = 2, N = 3, N = 4, N = 5, using my numerical integration function I = integrate(f, a, b, n) . Two times : first when number of subintervals n=1, and the second time when n=2. How can I do this? I'm thinking about writing two for-loops.
x=a:1:b;
a =0;
b =1;
N=1:5;
n=1:2;
f= @(x,N)x.^N;%function
F=@(x,N)(x.^((N)+1))./((N)+1);% Primitive function
exact_value = F(b,N)-F(a,N); % exact value
int(N) = integrate(f(N),a,b, n);
for i=1:length(N)
exact_value(i) =(F(b,N(i))-F(a,N(i)));
end
for j=1:length(N)
int(j) = integrate (f(j),a,b,n);
for k=1:length(n)
int(k)=integrate(f, a, b,n(k));
end
end
but when I ran it I got this error:
Not enough input arguments.
Error in upp3b>@(x,N)x.^N (line 6)
f= @(x,N)x.^N;%function
Error in upp3b (line 13)
int(N) = integrate(f(N),a,b, n);
1 Commento
Rik
il 16 Dic 2021
Modificato: Rik
il 16 Dic 2021
I recovered the removed content from the Google cache (something which anyone can do). Editing away your question is very rude. Someone spent time reading your question, understanding your issue, figuring out the solution, and writing an answer. Now you repay that kindness by ensuring that the next person with a similar question can't benefit from this answer.
Risposte (3)
Image Analyst
il 20 Dic 2020
You need to get the current value of N out of the N vector:
for j = 1 : length(N)
thisN = N(j); % Extract this particular value of N
int(j) = integrate (f(thisN), a, b, n);
for k = 1 : length(n)
int(k)=integrate(f, a, b, n(k));
end
end
1 Commento
Rik
il 16 Dic 2021
Deleted comment:
a =0;
b =1;
N=1:5;
n=1:2;
f= @(x,N)x.^N;%function
F=@(x,N)(x.^((N)+1))./((N)+1);% Primitive function
exact_value = F(b,N)-F(a,N); % exact value
int= integrate(f(x,N),a,b, n);
for i=1:length(N)
exact_value(i) =(F(b,N(i))-F(a,N(i)));
end
for j=1:length(N)
z = N(j); % Extract this particular value of N
int(j) = integrate (f(x,z),a,b,n);
for k=1:length(n)
int(k)=integrate(f(x,N),a,b,n(k));
end
end
i ran it and got this error :
Error using .^
Matrix dimensions must agree.
Error in upp3b>@(x,N)x.^N (line 5)
f= @(x,N)x.^N;%function
Error in upp3b (line 12)
int= integrate(f(x,N),a,b, n);
Jesús Zambrano
il 20 Dic 2020
You have defined 'f' as a function of x and N, but in the second for-loop and in the function 'integrate' you refer to 'f' with one argument instead of two.
1 Commento
Rik
il 16 Dic 2021
Modificato: Rik
il 16 Dic 2021
Deleted comment:
a =0;
b =1;
N=1:5;
n=1:2;
f= @(x,N)x.^N;%function
F=@(x,N)(x.^((N)+1))./((N)+1);% Primitive function
exact_value = F(b,N)-F(a,N); % exact value
int= integrate(f(x,N),a,b, n);
for i=1:length(N)
exact_value(i) =(F(b,N(i))-F(a,N(i)));
end
for j=1:length(N)
z = N(j); % Extract this particular value of N
int(j) = integrate (f(x,z),a,b,n);
for k=1:length(n)
int(k)=integrate(f(x,N),a,b,n(k));
end
end
i ran it and got this error :
Error using .^
Matrix dimensions must agree.
Error in upp3b>@(x,N)x.^N (line 5)
f= @(x,N)x.^N;%function
Error in upp3b (line 12)
int= integrate(f(x,N),a,b, n);
Image Analyst
il 20 Dic 2020
OK, not really sure what you're after but at least this runs without error. Put it all in one m-file.
% Initialization steps. Brute force cleanup of everything currently existing to start with a clean slate.
clc; % Clear the command window.
fprintf('Beginning to run %s.m ...\n', mfilename);
clear; % Erase all existing variables. Or clearvars if you want.
workspace; % Make sure the workspace panel is showing.
format long g;
format compact;
a =0;
b =1;
x=a:1:b;
N=1:5;
n=1:2;
f = @(x,N) x.^N; % function
F = @(x,N) (x.^((N)+1))./((N)+1);% Primitive function
exact_value1 = F(b,N) - F(a,N); % exact value
% Looping way of doing the same thing.
for k = 1 : length(N)
exact_value2(k) = F(b,N(k)) - F(a,N(k));
end
% int(N) = integrate(@f, a, b, N); % Won't work because N is a vector.
for j=1:length(N)
thisN = N(j);
int1(j) = integrate (f, a, b, thisN);
for k=1:length(n)
int2(k)=integrate(f, a, b, n(k));
end
end
% Show values in the command window.
int1
int2
%=========================================================================
function I = integrate(f, a, b, n)
h = (b - a) / n; % interval size
I = 0;
for i = 1 : n % loop for the rest of the calculations
p1 =(a+((i-1)*h)) + (h/4) ;
m = ((a+((i-1)*h)) + (a+(i*h)))/2;
p2 =(a+(i*h))- (h/4);
I = I + (h/3)*((2 * f(p1, n)) - f(m, n) + (2 * f(p2, n)));
end
end
0 Commenti
Vedere anche
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!