Evaluation-Interpolation using FFT algorithm

2 visualizzazioni (ultimi 30 giorni)
chicken vector
chicken vector il 21 Dic 2020
Modificato: chicken vector il 22 Dic 2020
I'm trying to develop a FFT algorithm for evaluation-interpolation of polynomials.
I tried the simple function where the coefficients are expressed as but only the DFT seems to work. I've spent quite some time on this and I can't make it work. Any suggestions?
f = @(x) x^3;
Pf = [1 , 0 , 0 , 0];
yf = FFT(Pf,1);
y = FFT(yf,2)
function y = FFT(P,k)
% k = 1 -> DFT
% k = 2 -> IDFT
N = length(P);
omega = exp(2*pi*1i/N);
if k == 1
l = 1;
p = 1;
elseif k == 2
l = 1/N;
p = -1;
end
if N == 1
y = P;
else
n = N/2;
P_e = P(2:2:end);
P_o = P(1:2:end);
y_e = FFT(P_e,k);
y_o = FFT(P_o,k);
y = zeros(N,1);
for j = 1 : N/2
y(j) = y_e(j) + (l*omega^(p*(j-1)))*y_o(j);
y(j+n) = y_e(j) - (l*omega^(p*(j-1)))*y_o(j);
end
end
end
  1 Commento
chicken vector
chicken vector il 22 Dic 2020
Modificato: chicken vector il 22 Dic 2020
For anyone having the same problem, below there's the fixed code for IFFT. I'm having some issues on dividing by N inside the recursive function, so it is done outside.
P = [%vector of the evaluations];
N = length(P);
y = IFFT(P)/N;
function y = IFFT(P)
% This works only if N = 2^k
N = length(P);
n = N/2;
omega = exp(-2*pi*1i/N);
if N == 1
y = P;
else
P_e = P(1:2:end);
P_o = P(2:2:end);
y_e = IFFT(P_e);
y_o = IFFT(P_o);
y = zeros(N,1);
for j = 1 : n
y(j) = y_e(j) + omega^(j-1)*y_o(j);
y(j+n) = y_e(j) - omega^(j-1)*y_o(j);
end
end
end

Accedi per commentare.

Risposte (1)

Matt J
Matt J il 22 Dic 2020
A highly impractical thing to do. If you know the coefficients of the polynomial, you should just use polyval().
However, if you must use FFT interpolation, then interpft() will readily do it,
  3 Commenti
Matt J
Matt J il 22 Dic 2020
Finding the roots of a 15th order polynomial can be highly unstable numerically, e.g.,
rTrue=sort((rand(1,15))*5);
coeffsTrue=poly(rTrue), %true coefficients
coeffsTrue = 1×16
0.0000 -0.0000 0.0005 -0.0048 0.0297 -0.1319 0.4312 -1.0507 1.9172 -2.6054 2.5973 -1.8477 0.8961 -0.2745 0.0461 -0.0030
coeffs=coeffsTrue+[0,randn(1,15)]*1e-6*max(coeffsTrue), %add small errors to coefficients
coeffs = 1×16
0.0000 -0.0000 0.0005 -0.0048 0.0297 -0.1319 0.4312 -1.0507 1.9172 -2.6054 2.5973 -1.8477 0.8961 -0.2745 0.0461 -0.0030
rTrue, %true roots
rTrue = 1×15
0.1598 0.4384 0.6582 1.3390 1.5456 1.7830 2.1863 2.2286 2.2790 2.6051 2.9448 3.0386 3.6676 4.1255 4.5711
r=sort(real( roots(coeffs) )).' %calculated roots
r = 1×15
0.1596 0.4403 0.6541 1.0277 1.0277 1.1391 1.1391 1.2642 1.2642 1.4859 1.4859 2.3075 2.3075 8.5793 8.5793
chicken vector
chicken vector il 22 Dic 2020
I used 'roots' aswell and appears to have very good performances until now.
Thank you Matt for your help.

Accedi per commentare.

Categorie

Scopri di più su Polynomials in Help Center e File Exchange

Tag

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by