- InitialLearnRate
- Schedule
- DropPeriod
- DropFactor
- MaxEpochs
Forecast for Reactive Power (HELP PLEASE!!!)
2 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
hi everyone, I'm new and I've been working with neural networks for a few months. In particular, the work I am doing is making a Reactive Power forecast. At the moment, following a matlab example I have created the following LSTM network. But unfortunately it doesn't seem to work at all.
I kindly ask for your help, I have been working on it for at least two months without getting anything good. Could someone kindly help me? How can I improve my predictions? What networks could I use? I have already tried the Narx a closed cycle but also the poor ones. Another thing I would like to understand is, in the attached script how could I also insert information on the time and day of the week in input to the network? At the moment I give input only the time series of Reactive Power, how could I insert other inputs?
Please help me, I really need it right now.
I am attaching scripts and results.
load reattivo;
data = reattivo;
data = [data{:}];
figure
plot(data)
xlabel("Quarter Hour")
ylabel("Reattivo")
title("Serie Storica Potenza Reattiva")
%Partition data
%Il dataset di partenza viene suddiviso in training set (l'addestramento
%avviene sul 90% del dataset iniziale) e test set (restante 10%)
numTimeStepsTrain = floor(0.9*numel(data));
dataTrain = data(1:numTimeStepsTrain+1);
dataTest = data(numTimeStepsTrain+1:end);
%Standardize Data
%Per un migliore adattamento e, per evitare che l'addestramento diverga,
%i dati vengono standardizzati in modo che abbiano media zero e varianza
%unitaria. Al momento della previsione, è necessario standardizzare i dati
%del test set utilizzando gli stessi parametri del training set
mu = mean(dataTrain);
sig =std(dataTrain);
dataTrainStandardized = (dataTrain - mu)/sig;
%Prepare Prediction Responses
%Per prevedere i valori delle fasi temporali future di una sequenza, le
%risposte vengono specificate come sequenze di addestramento con i valori
%spostati di una fase temporale. Cioè, da ogni fase temporale della
%sequenza di input, la rete LSTM impara a prevedere il valore della fase
%temporale successiva. I predittori sono le sequenze di addestramento senza
%la fase temporale finale.
XTrain = dataTrainStandardized(1:end-1);
YTrain = dataTrainStandardized(2:end);
%Define LSTM Network Architeture
%Crea una rete di regressione LSTM, con un layer avente 200 unità nascoste
numFeatures = 1;
numResponses = 1;
numHiddenUnits = 200;
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits)
fullyConnectedLayer(numResponses)
regressionLayer];
%Specify the Training Options
%Il risolutore viene impostato su "adam" e addestrato per 250 epoche.
%Affinchè i gradienti non esplodano, la soglia del gradiente è impostata su
%1. La velocità di apprendimento iniziale è impostata a 0.005 e viene
%successivamente ridotta dopo 125 epoche moltiplicando per un fattore 0.2.
options = trainingOptions('adam',...
'MaxEpochs',250,...
'GradientThreshold',1,...
'InitialLearnRate',0.005,...
'LearnRateSchedule','piecewise',...
'LearnRateDropPeriod',125, ...
'LearnRateDropFactor',0.2, ...
'Verbose',0, ...
'Plots','training-progress');
%Train LSTM Network
%Addestra la rete LSTM con le opzioni di addestramento specificate
%utilizzando trainNetwork
net = trainNetwork(XTrain,YTrain,layers,options);
%Forecast Future Time Steps
%Per prevedere i valori di più fasi temporali in futuro, si utilizza la
%funzione ForecastAndUpdateState per prevedere le fasi temporali una alla
%volta e aggiornare lo stato della rete a ogni previsione. Per ogni
%previsione, si utilizza la previsione precedente come input per la
%funzione.
%I dati del test set vengono standardizzati utilizzando gli stessi
%parametri dei dati di training.
dataTestStandardized = (dataTest - mu) / sig;
XTest = dataTestStandardized(1:end-1);
%Per inizializzare los stato della rete, viene prima eseguita una
%previsione sui dati di addestramento XTrain. Successivamente, effettua la
%prima previsione utilizzando l'ultima fase temporale della risposta di
%addestramento YTrain (fine). Si esegue il ciclo delle previsioni rimanenti
%e si inserisce la previsione precedente in ForecastAndUpdateState.
%Per grandi quantità di dati, lunghe sequenze o reti di grandi dimensioni,
%le previsioni sulla GPU sono generalmente più veloci da calcolare rispetto
%alle previsioni sulla CPU. In caso contrario, le previsioni sulla CPU
%sono generalmente più veloci da calcolare. Per previsioni di passi a tempo
%singolo, utilizzare la CPU. Per utilizzare la CPU per la previsione,
%impostare l'opzione "ExecutionEnvironmet" di ForecastAndUpdateState su
%"cpu"
net = predictAndUpdateState(net,XTrain);
[net,YPred] = predictAndUpdateState(net,YTrain(end));
numTimeStepsTest = numel(XTest);
for i = 2:numTimeStepsTest
[net,YPred(:,i)] = predictAndUpdateState(net,YPred(:,i-1),'ExecutionEnvironment','cpu');
end
%Annullare la standardizzazione delle previsioni utilizzando i parametri
%calcolati in precedenza
YPred = sig*YPred + mu;
%Il grafico dell'avanzamento dell'addestramento riporta l'errore quadratico
%medio (RMSE) calcolato dai dati standardizzati. Calcola l'RMSE dalle
%previsioni non standardizzate.
YTest = dataTest(2:end);
rmse = sqrt(mean((YPred-YTest).^2))
%Tracciare le serie temporali di addestramento con i valori previsti
figure
plot(dataTrain(1:end-1))
hold on
idx = numTimeStepsTrain:(numTimeStepsTrain+numTimeStepsTest);
plot(idx,[data(numTimeStepsTrain) YPred],'.-')
hold off
xlabel("Quarter hour")
ylabel("Cases")
title("Forecast")
legend(["Observed" "Forecast"])
%Confronta i valori previsti con i dati del test set
figure
subplot(2,1,1)
plot(YTest)
hold on
plot(YPred,'.-')
hold off
legend(["Observed" "Forecast"])
ylabel("Cases")
title("Forecast")
subplot(2,1,2)
stem(YPred - YTest)
xlabel("Quarter hour")
ylabel("Error")
title("RMSE = " + rmse)
%Update Network State with Observed Values
%Se si ha accesso ai valori effettivi delle fasi temporali tra le
%previsioni, è possibile aggiornare lo stato della rete con i valori
%osservati invece dei valori previsti.
%Innanzitutto, la rete viene inizializzata. Per fare previsioni su una
%nuova sequenza si utilizza resetState. Il ripristino dello stato della
%rete impedisce alle previsioni precedenti di influenzare le previsioni sui
%nuovi dati. Reimpostare lo stato della rete, quindi inizializzare lo stato
%della rete prevedendo sui dati di addestramento.
net = resetState(net);
net = predictAndUpdateState(net,XTrain);
%Prevedere ogni passo temporale. Per ogni previsione, prevedere la fase
%temporale successiva utilizzando il valore osservato dalla fase temporale
%precedente.
YPred = [];
numTimeStepsTest = numel(XTest);
for i = 1:numTimeStepsTest
[net,YPred(:,i)] = predictAndUpdateState(net,XTest(:,i),'ExecutionEnvironment','cpu');
end
%Destandardizzare i dati utilizzando i parametri calcolati precedentemente
YPred = sig*YPred + mu;
%Calcolare l'RMSE
rmse = sqrt(mean((YPred-YTest).^2))
%Confronta i valori previsti con i dati del test.
figure
subplot(2,1,1)
plot(YTest)
hold on
plot(YPred,'.-')
hold off
legend(["Observed" "Predicted"])
ylabel("Cases")
title("Forecast with Updates")
subplot(2,1,2)
stem(YPred - YTest)
xlabel("Month")
ylabel("Error")
title("RMSE = " + rmse)
0 Commenti
Risposte (2)
Hiro Yoshino
il 23 Dic 2020
It seems you just copied everything from the documentation and changed the input data.
I am just wondering if the training option is opimized for your data:
options = trainingOptions('adam',...
'MaxEpochs',250,...
'GradientThreshold',1,...
'InitialLearnRate',0.005,...
'LearnRateSchedule','piecewise',...
'LearnRateDropPeriod',125, ...
'LearnRateDropFactor',0.2, ...
'Verbose',0, ...
'Plots','training-progress');
Are you sure that the training has converged well?
If you are not sure if the trainng was successful you should consult someone knowledgeble or put the screen grab here.
I can give you some advice regarding to the option:
need optimizing. You can use "Experimental manager App" to tune them.
After that you can increase/decrease the number of hidden layer and also you can put more LSTM layers if you like.
4 Commenti
Hiro Yoshino
il 24 Dic 2020
The experimental manager app is available from R2020a onward.
Please follow this documentation: https://jp.mathworks.com/help/deeplearning/ref/experimentmanager-app.html
Giuseppe D'Amico
il 24 Dic 2020
4 Commenti
jialun chen
il 1 Gen 2021
Hi Giuseppe, have you find any solution regarding to this? I am also very interested.
Vedere anche
Categorie
Scopri di più su Sequence and Numeric Feature Data Workflows in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!