MATLAB equivalent functions in Keras

5 visualizzazioni (ultimi 30 giorni)
Ruhi Thomas
Ruhi Thomas il 2 Gen 2021
Risposto: Aneela il 9 Set 2024
layers = [ ...
sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits1)
lstmLayer(numHiddenUnits2)
fullyConnectedLayer(numResponses)
regressionLayer
];
What would be these layers be in Keras?
  1 Commento
Ruhi Thomas
Ruhi Thomas il 2 Gen 2021
i know lstmLayer is tf.keras.layers.LSTM
What about the others?

Accedi per commentare.

Risposte (1)

Aneela
Aneela il 9 Set 2024
Hi Ruhi Thomas,
If tf.keras is the way you imported Keras from TensorFlow, the above layers are equivalent to the following layers in Keras:
sequenceInputLayer(inputSize)
inputLayer= tf.keras.layers.Input(shape=(None, inputSize))
lstmLayer(numHiddenUnits1) –
lstm_layer1=tf.keras.layers.LSTM(numHiddenUnits1, return_sequences=True)(inputLayer)
lstmLayer(numHiddenUnits2) –
lstm_layer2=tf.keras.layers.LSTM(numHiddenUnits2, return_sequences=True)(inputLayer)
fullyConnectedLayer(numResponses)
dense_layer = tf.keras.Layers.Dense(numResponses)(lstm_layer2)
regressionLayer
  • In keras, there is no separate need for regression layer, instead we specify the loss function as part of the model compilation.
  • For a regression task, loss functions like “mean_squared_error,mean_absolute_error” are typically used.
model = Model(inputs=input_layer, outputs=dense_layer)
model.compile(optimizer='adam', loss='mean_squared_error')
Hope this helps!!

Categorie

Scopri di più su Deep Learning Toolbox in Help Center e File Exchange

Prodotti


Release

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by