Indefinite integrals of bessel function
16 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Rahul Gandhi
il 5 Gen 2021
Commentato: Rahul Gandhi
il 6 Gen 2021
I have this function that has bessel functions which has to be integrated from infinity to 0 and plot the graph between Fy and r.
Matlab returns NaN as output.

mu=4*pi*10^-7;
M=0.891*10^6;
R=5*10^-3;
s=10*10^-3;
t=5*10^-3;
syms q
r=linspace(-10*10^-3,10*10^-3,20)
func=@(q) 4*pi*M^2*mu*R^2*(besselj(1,(r.*q/R)).*besselj(1,q).^2.*sinh(q.*t/(2*R)).^2.*exp(-q.*s/R));
F=integral(func,inf,0)
plot(r,F)
%Edited:-Forgot to place F in plot.
4 Commenti
David Goodmanson
il 6 Gen 2021
Hi Rahul,
Compared to the expression you posted, it looks func is missing a factor of epsilon. But a much more serious issue is, what happened to the factor of 1/q?
Risposta accettata
Walter Roberson
il 5 Gen 2021
you need ArrayValued option for integrate()
2 Commenti
Walter Roberson
il 5 Gen 2021
mu=4*pi*10^-7;
M=0.891*10^6;
R=5*10^-3;
s=10*10^-3;
t=5*10^-3;
r=linspace(-10*10^-3,10*10^-3,20)
syms q
func=@(q) 4*pi*M^2*mu*R^2*(besselj(1,(r.*q/R)).*besselj(1,q).^2.*sinh(q.*t/(2*R)).^2.*exp(-q.*s/R));
F = vpaintegral(func(q), q, inf, 0);
plot(r,F, 'b*-')
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Bessel functions in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
