Help fitting data to an implicit equation
13 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Hello:
I need to fit some data to the following implicit equation:
((1-y)^(1-b)/y)=exp(-kt)
t is a vector containing time values and y is a vector containing current values. for each series of data y vs t, I need to determine b and k
b has to be between 0 and 1, and k needs to be greater than 0.
I have both the optimization and the curve fitting toolboxes.
Any suggestions on what tools to use (lsqcurvefit? something else? would be very appreciated)
Thanks!
0 Commenti
Risposta accettata
Jeff Miller
il 14 Gen 2021
Modificato: Jeff Miller
il 14 Gen 2021
I would suggest using fminsearch. The error function to be minimized would be something like:
function thiserr = err(x,y,t)
b = x(1);
k = x(2);
thiserr = sum( (((1-y).^(1-b)./y) - exp(-kt))^2 );
end
You should be able to find examples of how to use fminsearch if you need more detail on how to call it. In your case y and t are "extra parameters". Look here for information on how to handle that.
3 Commenti
Jeff Miller
il 16 Gen 2021
You are welcome. That function value NaN is a bad sign. It means thiserr is NaN for all values of b and k that fminsearch has checked. You don't have any y=0 values, do you? Dividing by 0 would cause nans for all b and k.
Più risposte (1)
John D'Errico
il 16 Gen 2021
My thought would be the lazy solution. If your model is:
((1-y)^(1-b)/y)=exp(-kt)
then log the model. That is, we know that
(1-b)*log(1-y) + k*t = log(y)
With one more step, this reduces to
-b*log(1-y) + k*t = log(y) - log(1-y)
You can compute the parameters k and b using a simple linear regression now. Thus, if y and t are column vectors, we have:
bk = [-log(1-y),t] \ (log(y) - log(1-y));
so bk is a vector of length 2, contining the estimates for b and k respectively. If you find that b or k are estimated to be something outside of the valid region, then I would first consider if this is a reasonable model, but then you could just use lsqlin to estimate them, since lsqlin does provide bound constraints.
Vedere anche
Categorie
Scopri di più su Linear Least Squares in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!