Maximum Likelihood Estimation for custom distribution

2 visualizzazioni (ultimi 30 giorni)
Hello,
I have the following problem.
I'm trying to estimate the parameters of a non-standard distribution. I launched dfittool, chose File -> Define Custom Distribution, created file with my own distribution and placed it to Documents/MATLAB/+prob/KouDistribution.m.
When I choose File -> Import Custom Distribution, I cann't find it in the list. I also copied my file to other different folders called '+prob'. But it had no result.
So, where should I place that file?
I have one more question.
I must write method fit for my new distribution, but I don't know, how. I now the probability density function, I know the cumulative density function.
May be, there is another way to estimate needed parameters?
This is a very important problem for me, so I ask someone to help me, who had the same problem, may be, or knows the solution.
Here is the code for distributions object
classdef KouDistribution < prob.ToolboxFittableParametricDistribution
properties(Constant)
DistributionName = 'kou';
end
properties(Dependent = true)
mu
sigma
lambda
p
eta_1
eta_2
end
properties(Constant)
NumParameters = 6;
ParameterNames = {'mu' 'sigma' 'lambda' 'p' 'eta_1' 'eta_2'};
ParameterDescription = {'mu' 'sigma' 'lambda' 'p' 'eta_1' 'eta_2'};
end
properties(GetAccess = 'public', SetAccess = 'protected')
ParameterValues
end
methods
function pd = KouDistribution(mu, sigma, lambda, p, eta_1, eta_2)
pd.ParameterValues = [mu sigma lambda p eta_1 eta_2];
pd.ParameterIsFixed = [true true true true true true];
pd.ParameterCovariance = zeros(pd.NumParameters);
end
function m = meat(this)
m = this.mu;
end
function s = std(this)
s = sqrt(2) * this.sigma;
end
function v = var(this)
v = 2 * this.sigma^2;
end
end
methods
function this = set.mu(this, mu)
this.ParameterValues(1) = mu;
end
function this = set.sigma(this, sigma)
this.ParameterValues(2) = sigma;
end
function this = set.lambda(this, lambda)
this.ParameterValues(3) = lambda;
end
function this = set.p(this, p)
this.ParameterValues(4) = p;
end
function this = set.eta_1(this, eta_1)
this.ParameterValues(5) = eta_1;
end
function this = set.eta_2(this, eta_2)
this.ParameterValues(6) = eta_2;
end
function mu = get.mu(this)
mu = this.ParameterValues(1);
end
function sigma = get.sigma(this)
sigma = this.ParameterValues(2);
end
function lambda = get.lambda(this)
lambda = this.ParameterValues(3);
end
function p = get.p(this)
p = this.ParameterValues(4);
end
function eta_1 = get.eta_1(this)
eta_1 = this.ParameterValues(5);
end
function eta_2 = get.eta_2(this)
eta_2 = this.ParameterValues(6);
end
end
methods(Static)
function pd = fit(x, varargin)
end
function [nll, acov] = likefunc(params, x)
mu = params(1);
sigma = params(2);
lambda = params(3);
p = params(4);
eta_1 = params(5);
eta_2 = params(6);
nll = -sum(log(pdffunc(x, mu, sigma, lambda, p, eta_1, eta_2)));
acov = (sigma^2/n) * eye(2);
end
function y = cdffunc(x, mu, sigma, lambda, p, eta_1, eta_2)
y = 0;
for n = 1 : 10
pi_n = exp(-lambda) * lambda^n / factorial(n);
for k = 1 : n
pp = P(n, k, eta_1, eta_2, p);
qq = Q(n, k, eta_1, eta_2, p);
f1 = exp((sigma * eta_1)^2 / 2) / (sigma * sqrt(2 * pi)) ...
* (sigma * eta_1)^k * I(x - mu, -eta_1, -1 / sigma, -sigma * eta_1, k - 1);
f2 = exp((sigma * eta_2)^2 / 2) / (sigma * sqrt(2 * pi)) ...
* (sigma * eta_2)^k * I(x - mu, eta_2, 1 / sigma, -sigma * eta_2, k - 1);
y = y + pi_n * (pp * f1 + qq * f2);
end
end
y = y + exp(-lambda) * normpdf(-(x - mu) / sigma);
end
function y = pdffunc(x, mu, sigma, lambda, p, eta_1, eta_2)
y = 0;
for n = 1 : 10
pi_n = exp(-lambda) * lambda^n / factorial(n);
for k = 1 : n
pp = P(n, k, eta_1, eta_2, p);
qq = Q(n, k, eta_1, eta_2, p);
h1 = Hh(-x / sigma + sigma * eta_1, k - 1);
h2 = Hh(x / sigma + sigma * eta_2, k - 1);
f1 = (sigma * eta_1)^k * exp((sigma * eta_1)^2 / 2) / (sigma * sqrt(2 * pi))...
* exp(-x * eta_1) .* h1;
f2 = (sigma * eta_2)^k * exp((sigma * eta_2)^2 / 2) / (sigma * sqrt(2 * pi))...
* exp(x * eta_2) .* h2;
y = y + pi_n * (pp * f1 + qq * f2);
end
end
y = y + exp(-lambda) * normcdf(-(x - mu) / sigma);
end
function y = invfunc(p, mu, sigma, lambda, p, eta_1, eta_2)
end
function y = randfunc(mu, sigma, lambda, p, eta_1, eta_2, varargin)
end
end
methods(Static, Hidden)
function info = getInfo
info.Name = 'Kou';
info.code = 'kou';
info.pnames = {'mu', 'sigma', 'lambda', 'p', 'eta_1', 'eta_2'};
info.pdescription = {'mu', 'sigma', 'lambda', 'p', 'eta_1', 'eta_2'};
info.prequired = [0, 0.2, 3, 0.4, 10, 5];
info.hasconfbounds = false;
info.censoring = false;
info.support = [-Inf Inf];
info.closedbound = [false false false false false false];
info.iscontinuous = true;
info.islocscal = true;
info.uselogpp = false;
info.optimopts = false;
info.logci = [false false false false false false];
end
end
end
function f = Hh(x, n) f(1:length(x)) = 0; for i = 1:length(x) f(i) = integral(@(t) (t - x(i)).^n .* exp(-t.^2 / 2), x(i), Inf); end end
function f = P(n, k, eta_1, eta_2, p) q = 1 - p; f = 0; for i = k : n - 1 f = f + nchoosek(n - k - 1, i - k) * nchoosek(n, i) * (eta_1 / (eta_1 + eta_2))^(i - k)... * (eta_2 / (eta_1 + eta_2))^(n - i) * p^i * q^(n - i); end end
function f = Q(n, k, eta_1, eta_2, p) q = 1 - p; f = 0; for i = k : n - 1 f = f + nchoosek(n - k - 1, i - k) * nchoosek(n, i) * (eta_1 / (eta_1 + eta_2))^(n - i)... * (eta_2 / (eta_1 + eta_2))^(i - k) * p^(n - i) * q^(i); end end
function f = I(c, alpha, beta, delta, n) f(1:length(c)) = 0; for i = 1:length(c) f = integral(@(x) exp(alpha * x) .* Hh(beta * x - delta, n), c(i), Inf); end end

Risposte (1)

Tom Lane
Tom Lane il 22 Apr 2013
Here are some tricks to help debug this sort of thing:
makedist -reset % will cause MATLAB to revisit your file and re-load
p = makedist('kou',1,2,3...) % to make sure you can create one of these
pdf(p,1:4) % to make sure you can call its pdf method
Here are the things I had to change to get your file to load into dfittool:
1. The invfunc method had two inputs with the same name. Change one of them.
2. The getInfo method needs to start with
info = getInfo@prob.ToolboxFittableParametricDistribution('prob.KouDistribution');
info.name = 'Kou';
(You were missing the first line and had Name rather than name on the second.)
3. Correct the spelling of the islocscale property in this same method.
With these changes I could get dfittool to show your distribution. When I tried to fit it I got an error because your fit method isn't implemented yet.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by