Explanation of parallel plates capacitor implementation with finite element methods and with in-homogenous domain.
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
function cap
close all;
hx = 0.002;
vx = 0:hx:0.1;
hy = 0.002;
h = hx;
vy = 0:hy:0.1;
nx = length(vx);
ny = length(vy);
n = nx*ny;
A = zeros(n);
b = zeros(n,1);
eps1 = 4
eps2 = 14
for ix = 1:nx
for jy = 1:ny
i = (jy-1) * nx + ix; % the global index of the ix,jy vertex
x = vx(ix); % the geometrical x coordinate
y = vy(jy); % the geometrical y coordinate
if ix == 1
% (1)
A(i,i) = 1;
b(i) = 0;
elseif ix == nx
% (2)
A(i,i) = 1;
b(i) = 10;
elseif jy == 1
if ix < (nx+1)/2
% (3)
A(i,i) = eps1*(-(2/hx^2)-(2/hy^2));
A(i,i+1) = eps1*((1/hx^2)-(1/2*x*hx));
A(i,i-1) = eps1*((1/hx^2)-(1/2*x*hx));
A(i,i+nx) = eps1*(1/hy^2);
elseif ix > (nx+1)/2
% (4)
A(i,i) = eps2*(-(2/hx^2)-(2/hy^2));
A(i,i+1) = eps2*((1/hx^2)-(1/2*x*hx));
A(i,i-1) = eps2*((1/hx^2)-(1/2*x*hx));
A(i,i+nx) = eps2*(1/hy^2);
else
% (5)
A(i,i) = (eps1+eps2)*(-(2/hx^2)-(2/hy^2));
A(i,i+1) = eps2*((1/hx^2)-(1/2*x*hx));
A(i,i-1) = eps1*((1/hx^2)-(1/2*x*hx));
A(i,i+nx) = (eps1+eps2)*(1/hy^2);
end
elseif jy == ny
% (6)
A(i,i) = eps2*(-(2/hx^2)-(2/hy^2));
A(i,i+1) = eps2*((1/hx^2)-(1/2*x*hx));
A(i,i-1) = eps2*((1/hx^2)-(1/2*x*hx));
A(i,i-nx) = eps2*(2/hy^2);
elseif jy < (ny+1)/2 && ix < (nx+1)/2
% (7)
A(i,i) = eps1*(-(2/hx^2)-(2/hy^2));
A(i,i+1) = eps1*((1/hx^2)-(1/2*x*hx));
A(i,i-1) = eps1*((1/hx^2)-(1/2*x*hx));
A(i,i-nx) = eps1*(1/hy^2);
A(i,i+nx) = eps1*(1/hy^2);
elseif jy > (ny+1)/2 || ix > (nx+1)/2
% (8)
A(i,i) = eps2*(-(2/hx^2)-(2/hy^2));
A(i,i+1) = eps2*((1/hx^2)-(1/2*x*hx));
A(i,i-1) = eps2*((1/hx^2)-(1/2*x*hx));
A(i,i+nx) = eps2*(1/hy^2);
A(i,i-nx) = eps2*(1/hy^2);
elseif jy < (ny+1)/2
% (9)
A(i,i) = (eps1+eps2)*(-(2/hx^2)-(2/hy^2));
A(i,i+1) = eps2*((1/hx^2)-(1/2*x*hx));
A(i,i-1) = eps1*((1/hx^2)-(1/2*x*hx));
A(i,i+nx) = ((eps1+eps2)/2)*(1/hy^2);
A(i,i-nx) = ((eps1+eps2)/2)*(1/hy^2);
elseif ix < (nx+1)/2
% (10)
A(i,i) = (eps1+eps2)*(-(2/hx^2)-(2/hy^2));
A(i,i+1) = ((eps1+eps2)/2)*((1/hx^2)-(1/2*x*hx));
A(i,i-1) = ((eps1+eps2)/2)*((1/hx^2)-(1/2*x*hx));
A(i,i+nx) = eps2*(1/hy^2);
A(i,i-nx) = eps1*(1/hy^2);
else
% (11)
A(i,i) = (eps1+(eps2*3))*(-(2/hx^2)-(2/hy^2));
A(i,i+1) = eps2*((1/hx^2)-(1/2*x*hx));
A(i,i-1) = ((eps1+eps2)/2)*((1/hx^2)-(1/2*x*hx));
A(i,i+nx) = eps2*(1/hy^2);
A(i,i-nx) = ((eps1+eps2)/2)*(1/hy^2);
end
end
end
% solve the problem
u = A\b;
s = reshape(u,nx,ny);
[X,Y] = meshgrid(vx,vy);
surf(X,Y,s)
end
1 Commento
Risposte (1)
Shubham Khatri
il 16 Feb 2021
Hello,
As far as the code is concerned, Please remove the last 'end' from the code for it to work as in the code below.
close all;
hx = 0.002;
vx = 0:hx:0.1;
hy = 0.002;
h = hx;
vy = 0:hy:0.1;
nx = length(vx);
ny = length(vy);
n = nx*ny;
A = zeros(n);
b = zeros(n,1);
eps1 = 4
eps2 = 14
for ix = 1:nx
for jy = 1:ny
i = (jy-1) * nx + ix; % the global index of the ix,jy vertex
x = vx(ix); % the geometrical x coordinate
y = vy(jy); % the geometrical y coordinate
if ix == 1
% (1)
A(i,i) = 1;
b(i) = 0;
elseif ix == nx
% (2)
A(i,i) = 1;
b(i) = 10;
elseif jy == 1
if ix < (nx+1)/2
% (3)
A(i,i) = eps1*(-(2/hx^2)-(2/hy^2));
A(i,i+1) = eps1*((1/hx^2)-(1/2*x*hx));
A(i,i-1) = eps1*((1/hx^2)-(1/2*x*hx));
A(i,i+nx) = eps1*(1/hy^2);
elseif ix > (nx+1)/2
% (4)
A(i,i) = eps2*(-(2/hx^2)-(2/hy^2));
A(i,i+1) = eps2*((1/hx^2)-(1/2*x*hx));
A(i,i-1) = eps2*((1/hx^2)-(1/2*x*hx));
A(i,i+nx) = eps2*(1/hy^2);
else
% (5)
A(i,i) = (eps1+eps2)*(-(2/hx^2)-(2/hy^2));
A(i,i+1) = eps2*((1/hx^2)-(1/2*x*hx));
A(i,i-1) = eps1*((1/hx^2)-(1/2*x*hx));
A(i,i+nx) = (eps1+eps2)*(1/hy^2);
end
elseif jy == ny
% (6)
A(i,i) = eps2*(-(2/hx^2)-(2/hy^2));
A(i,i+1) = eps2*((1/hx^2)-(1/2*x*hx));
A(i,i-1) = eps2*((1/hx^2)-(1/2*x*hx));
A(i,i-nx) = eps2*(2/hy^2);
elseif jy < (ny+1)/2 && ix < (nx+1)/2
% (7)
A(i,i) = eps1*(-(2/hx^2)-(2/hy^2));
A(i,i+1) = eps1*((1/hx^2)-(1/2*x*hx));
A(i,i-1) = eps1*((1/hx^2)-(1/2*x*hx));
A(i,i-nx) = eps1*(1/hy^2);
A(i,i+nx) = eps1*(1/hy^2);
elseif jy > (ny+1)/2 || ix > (nx+1)/2
% (8)
A(i,i) = eps2*(-(2/hx^2)-(2/hy^2));
A(i,i+1) = eps2*((1/hx^2)-(1/2*x*hx));
A(i,i-1) = eps2*((1/hx^2)-(1/2*x*hx));
A(i,i+nx) = eps2*(1/hy^2);
A(i,i-nx) = eps2*(1/hy^2);
elseif jy < (ny+1)/2
% (9)
A(i,i) = (eps1+eps2)*(-(2/hx^2)-(2/hy^2));
A(i,i+1) = eps2*((1/hx^2)-(1/2*x*hx));
A(i,i-1) = eps1*((1/hx^2)-(1/2*x*hx));
A(i,i+nx) = ((eps1+eps2)/2)*(1/hy^2);
A(i,i-nx) = ((eps1+eps2)/2)*(1/hy^2);
elseif ix < (nx+1)/2
% (10)
A(i,i) = (eps1+eps2)*(-(2/hx^2)-(2/hy^2));
A(i,i+1) = ((eps1+eps2)/2)*((1/hx^2)-(1/2*x*hx));
A(i,i-1) = ((eps1+eps2)/2)*((1/hx^2)-(1/2*x*hx));
A(i,i+nx) = eps2*(1/hy^2);
A(i,i-nx) = eps1*(1/hy^2);
else
% (11)
A(i,i) = (eps1+(eps2*3))*(-(2/hx^2)-(2/hy^2));
A(i,i+1) = eps2*((1/hx^2)-(1/2*x*hx));
A(i,i-1) = ((eps1+eps2)/2)*((1/hx^2)-(1/2*x*hx));
A(i,i+nx) = eps2*(1/hy^2);
A(i,i-nx) = ((eps1+eps2)/2)*(1/hy^2);
end
end
end
% solve the problem
u = A\b;
s = reshape(u,nx,ny);
[X,Y] = meshgrid(vx,vy);
surf(X,Y,s)
Hope it helps
0 Commenti
Vedere anche
Categorie
Scopri di più su Special Functions in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!