custom multiple output regression

4 visualizzazioni (ultimi 30 giorni)
jaehong kim
jaehong kim il 10 Feb 2021
Commentato: jaehong kim il 10 Feb 2021
Hi
i want a way to solve 'custom multiple output regression'
i just want to see a simple example code. I can't find examples because my googling skills aren't good.
I hope that someone who is very generous can leave even a simple example code.
'custom multiple output regression'
layer structure etc...
Thank you for reading my quesion!

Risposta accettata

Iuliu Ardelean
Iuliu Ardelean il 10 Feb 2021
Modificato: Iuliu Ardelean il 10 Feb 2021
layers1 = [
imageInputLayer([21 21 1],"Name","imageinput")
convolution2dLayer([3 3],32,"Name","conv_1","Padding","same")
batchNormalizationLayer("Name","batchnorm_1")
leakyReluLayer(0.01,"Name","leakyrelu_1")
convolution2dLayer([3 3],32,"Name","conv_2","Padding","same")
batchNormalizationLayer("Name","batchnorm_2")
leakyReluLayer(0.01,"Name","leakyrelu_2")
convolution2dLayer([3 3],32,"Name","conv_3","Padding","same")
batchNormalizationLayer("Name","batchnorm_3")
leakyReluLayer(0.01,"Name","leakyrelu_3")
fullyConnectedLayer(8,"Name","fc") % <- 8 outputs
regressionLayer("Name","regressionoutput")];
  1 Commento
jaehong kim
jaehong kim il 10 Feb 2021
Thank you for your answer.
However, I want a neural network layer that receives 8 features and outputs 8(or 1) output.
In other words, i want something about DNN. It seems that your answer is CNN.

Accedi per commentare.

Più risposte (0)

Tag

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by