How to solve a system of 3 ODE and a linear equation.
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
Ricardo Mendes
il 20 Feb 2021
Risposto: Shadaab Siddiqie
il 23 Feb 2021
How to solve a system of 3 ODE
dvdt=z;
dzdt=-v/(L0*C0)-z*R0/L0
dTempdt=R0*((C0*z)^2)/(m_ponte*Cp_Al)
and one linear equation: R=R0*(1+Alfa*(temp(i)-T0)) to consider the resistence variation with temperature instead of constant resistence R0?
F=@(t, v, z, temp) [z; -v/(L0*C0)-z*R0/L0; R0*((C0*z)^2)/(m_ponte*Cp)];
v(1)=-20000;
z(1)=0;
temp(1)=298;
t(1)=0;
for i=1:N
k1 = h*F(t(i), v(i), z(i), temp(i));
k2 = h*F(t(i)+h/2, v(i)+k1(1)/2, z(i)+k1(2)/2, temp(i)+k1(3)/2);
k3 = h*F(t(i)+h/2, v(i)+k2(1)/2, z(i)+k2(2)/2, temp(i)+k2(3)/2);
k4 = h*F(t(i)+h, v(i)+k3(1), z(i)+k3(2), temp(i)+k3(3));
v(i+1) = v(i) + (1/6)*(k1(1)+2*k2(1)+2*k3(1)+k4(1));
z(i+1) = z(i) + (1/6)*(k1(2)+2*k2(2)+2*k3(2)+k4(2));
temp(i+1) = temp(i) + (1/6)*(k1(3)+2*k2(3)+2*k3(3)+k4(3));
end
0 Commenti
Risposta accettata
Shadaab Siddiqie
il 23 Feb 2021
From my understanding you want to solve an 3rd degree ODE equations. You can go through solve ODE, symbolic variables and expressions and also dsolve for more information.
0 Commenti
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Numerical Integration and Differential Equations in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!