How can I normalize data between 0 and 1 ? I want to use logsig...
    89 visualizzazioni (ultimi 30 giorni)
  
       Mostra commenti meno recenti
    
All is in the question: I want to use logsig as a transfer function for the hidden neurones so I have to normalize data between 0 and 1. The mapminmax function in NN tool box normalize data between -1 and 1 so it does not correspond to what I'm looking for.
0 Commenti
Risposta accettata
  José-Luis
      
 il 15 Mag 2013
         bla = 100.*randn(1,10)
 norm_data = (bla - min(bla)) / ( max(bla) - min(bla) )
3 Commenti
  José-Luis
      
 il 15 Mag 2013
				Yes, provided you use the same normalization bounds (the min and max of both datasets). To rescale, please look at the below code.
bla = 100.*randn(1,10)
minVal = min(bla);
maxVal = max(bla);
norm_data = (bla - minVal) / ( maxVal - minVal )
your_original_data = minVal + norm_data.*(maxVal - minVal)
  Aviral Petwal
 il 22 Giu 2018
				No need to denormalize the data. For your Test set also you can normalize the data with the same parameters and feed it to NN. If you trained on Normalised data just normalize your test set using same parameters and feed the data to NN.
Più risposte (4)
  Jurgen
      
 il 15 Mag 2013
        NDATA = mat2gray(DATA);
2 Commenti
  Greg Heath
      
      
 il 8 Ott 2016
				
      Modificato: Greg Heath
      
      
 il 8 Ott 2016
  
			Why not just try it and find out?
close all, clear all, clc
 [ x1 , t1 ] = simplefit_dataset;  
 DATA1 = [ x1, t1 ];
 DATA2 = [ x1; t1 ];
 whos DATA1 DATA2
 minmax1 = minmax(DATA1)
 minmax2 = minmax(DATA2)
 minmaxMTG1 = minmax( mat2gray(DATA1) )
 minmaxMTG2 = minmax( mat2gray(DATA2) )
Hope this helps.
Greg
  Abhijit Bhattacharjee
    
 il 25 Mag 2022
        As of MATLAB R2018a, there is an easy one-liner command that can do this for you. It's called NORMALIZE.
Here is an example, where a denotes the vector of data:
a_normalized = normalize(a, 'range');
1 Commento
  shazia
 il 10 Ago 2023
				How about denormalization what comand should we use to denormalize after training to calculate the error. please guide
  Greg Heath
      
      
 il 11 Mag 2017
        
      Modificato: Greg Heath
      
      
 il 11 Mag 2017
  
      I like to calculate min, mean, std and max to detect outliers with standardized data (zero mean/unit variance). For normalization and denormalization I just let the training function use defaults
 tansig and linear
however, if the ouput is naturally bounded use
tansig and tansig
or
 tansig and logsig
In short, unless you are plotting you don't have to worry about anything except outliers.
Hope this helps.
Greg
0 Commenti
  Angus Steele
 il 20 Set 2017
        function [ newValue ] = math_scale_values( originalValue, minOriginalRange, maxOriginalRange, minNewRange, maxNewRange )
%   MATH_SCALE_VALUES
%   Converts a value from one range into another
%       (maxNewRange - minNewRange)(originalValue - minOriginalRange)
%    y = ----------------------------------------------------------- + minNewRange      
%               (maxOriginalRange - minOriginalRange)
newValue = minNewRange + (((maxNewRange - minNewRange) * (originalValue - minOriginalRange))/(maxOriginalRange - minOriginalRange));
end
0 Commenti
Vedere anche
Categorie
				Scopri di più su Define Shallow Neural Network Architectures in Help Center e File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!








