How can I normalize data between 0 and 1 ? I want to use logsig...

642 visualizzazioni (ultimi 30 giorni)
All is in the question: I want to use logsig as a transfer function for the hidden neurones so I have to normalize data between 0 and 1. The mapminmax function in NN tool box normalize data between -1 and 1 so it does not correspond to what I'm looking for.

Risposta accettata

José-Luis il 15 Mag 2013
bla = 100.*randn(1,10)
norm_data = (bla - min(bla)) / ( max(bla) - min(bla) )
  3 Commenti
José-Luis il 15 Mag 2013
Yes, provided you use the same normalization bounds (the min and max of both datasets). To rescale, please look at the below code.
bla = 100.*randn(1,10)
minVal = min(bla);
maxVal = max(bla);
norm_data = (bla - minVal) / ( maxVal - minVal )
your_original_data = minVal + norm_data.*(maxVal - minVal)
Aviral Petwal
Aviral Petwal il 22 Giu 2018
No need to denormalize the data. For your Test set also you can normalize the data with the same parameters and feed it to NN. If you trained on Normalised data just normalize your test set using same parameters and feed the data to NN.

Accedi per commentare.

Più risposte (4)

Jurgen il 15 Mag 2013
NDATA = mat2gray(DATA);
  2 Commenti
Greg Heath
Greg Heath il 8 Ott 2016
Modificato: Greg Heath il 8 Ott 2016
Why not just try it and find out?
close all, clear all, clc
[ x1 , t1 ] = simplefit_dataset;
DATA1 = [ x1, t1 ];
DATA2 = [ x1; t1 ];
whos DATA1 DATA2
minmax1 = minmax(DATA1)
minmax2 = minmax(DATA2)
minmaxMTG1 = minmax( mat2gray(DATA1) )
minmaxMTG2 = minmax( mat2gray(DATA2) )
Hope this helps.

Accedi per commentare.

Abhijit Bhattacharjee
Abhijit Bhattacharjee il 25 Mag 2022
As of MATLAB R2018a, there is an easy one-liner command that can do this for you. It's called NORMALIZE.
Here is an example, where a denotes the vector of data:
a_normalized = normalize(a, 'range');
  1 Commento
shazia il 10 Ago 2023
How about denormalization what comand should we use to denormalize after training to calculate the error. please guide

Accedi per commentare.

Greg Heath
Greg Heath il 11 Mag 2017
Modificato: Greg Heath il 11 Mag 2017
I like to calculate min, mean, std and max to detect outliers with standardized data (zero mean/unit variance). For normalization and denormalization I just let the training function use defaults
tansig and linear
however, if the ouput is naturally bounded use
tansig and tansig
tansig and logsig
In short, unless you are plotting you don't have to worry about anything except outliers.
Hope this helps.

Angus Steele
Angus Steele il 20 Set 2017
function [ newValue ] = math_scale_values( originalValue, minOriginalRange, maxOriginalRange, minNewRange, maxNewRange )
% Converts a value from one range into another
% (maxNewRange - minNewRange)(originalValue - minOriginalRange)
% y = ----------------------------------------------------------- + minNewRange
% (maxOriginalRange - minOriginalRange)
newValue = minNewRange + (((maxNewRange - minNewRange) * (originalValue - minOriginalRange))/(maxOriginalRange - minOriginalRange));

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by