Equation of a constrained circle

1 visualizzazione (ultimi 30 giorni)
Sven
Sven il 18 Mag 2013
I have a circle with known parameters (x,y,r):
x = 37
y = -7
r = 38
I would like to find the parameters of a new circle (x2,y2,r2) that:
  1. Passes through the origin [0,0]
  2. Passes through the point [x,y+r]
  3. Keeps the same x value (ie, x2==x)
Can anyone wrap their head around this one? Basically it's like pinning the max-y point on the first circle, and then growing-shrinking that circle until it crosses the origin.
  2 Commenti
Roger Stafford
Roger Stafford il 18 Mag 2013
Modificato: Roger Stafford il 18 Mag 2013
It's better if you solve it yourself (with a little help.) Let (uppercase) X and Y be arbitrary coordinates on your new circle with unknown parameters x2, y2, and r2. Now write the above three conditions as the three equations these quantities must satisfy and solve for x2, y2, and r2. I'll get you started on the first equation:
(0-x2)^2+(0-y2)^2 = r2^2 <-- substituting (0,0) for (X,Y)
Sven
Sven il 18 Mag 2013
Thanks Roger. Don't worry, not homework... I was just about to get on a long flight and this was bugging me. With your prompting I got there. I'd gone down that route but used wolfram alpha without taking the time to think about it... it doesn't like variables called x2 (interprets them as 2*x). I got flustered and was in a hurry, hence the question here :)
As a W.A. string: (0-x)^2+(0-b)^2 = c^2, (y+r-b)^2 = c^2, solve for b, c

Accedi per commentare.

Risposte (1)

Youssef  Khmou
Youssef Khmou il 18 Mag 2013
hi try to verify this initiation :
the first circle is defined by :
a=37;b=-7;r=38;
We are looking for new circle based on The three conditions :
1.a2^+b2^=r2^2
2.(a-a2)²+((b+r)-b2)^2=r2^2
3.a2=a;
the solution is ( to be verified ):
a2=a;
b2==((b+r)^2+a^2)/(2*(b+r));
r2=r2=b+r-b2;
....

Categorie

Scopri di più su Mathematics in Help Center e File Exchange

Tag

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by