How to train complex [64 1] matrices in deeplearning nw
    4 visualizzazioni (ultimi 30 giorni)
  
       Mostra commenti meno recenti
    
    juseoung lee
 il 24 Mar 2021
  
    
    
    
    
    Risposto: Srivardhan Gadila
    
 il 29 Mar 2021
            I am trying to train a complex numbered matrix with a fullyconnected layer,
 but I can't read the value of the imaginary axis from the input layer. Is there a way?
1) The method I thought of was dividing real and imag to learn the input layer into two
     , but I can't find such a method well..
0 Commenti
Risposta accettata
  Srivardhan Gadila
    
 il 29 Mar 2021
        You can refer to the example: Modulation Classification with Deep Learning, specifically the pretrained network and "Transform Complex Signals to Real Arrays" section.
The following code might help you:
inputSize = [64 1 2];
numSamples = 128;
numClasses = 4;
%% Generate random data for training the network.
trainData = randn([inputSize numSamples]);
trainLabels = categorical(randi([0 numClasses-1], numSamples,1));
%% Create a network.
layers = [
    imageInputLayer(inputSize,'Name','input')  
    convolution2dLayer([3 1],16,'Padding','same','Name','conv_1')
    batchNormalizationLayer('Name','BN_1')
    reluLayer('Name','relu_1')
    fullyConnectedLayer(10,'Name','fc1')
    fullyConnectedLayer(numClasses,'Name','fc2')
    softmaxLayer('Name','softmax')
    classificationLayer('Name','classOutput')];
lgraph = layerGraph(layers);
analyzeNetwork(lgraph);
%% Define training options.
options = trainingOptions('adam', ...
    'InitialLearnRate',0.005, ...
    'LearnRateSchedule','piecewise',...
    'MaxEpochs',100, ...
    'MiniBatchSize',128, ...
    'Verbose',1, ...
    'Plots','training-progress');
%% Train the network.
net = trainNetwork(trainData,trainLabels,layers,options);
0 Commenti
Più risposte (0)
Vedere anche
Categorie
				Scopri di più su Deep Learning Toolbox in Help Center e File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

