Solving a non linear ODE with Matlab ode functions

13 visualizzazioni (ultimi 30 giorni)
I need to solve a non linear ODE. I want to use one of the ODE matlab functions if possible. However the problem is that it is not possible for me to convert it to a first order differential equation. The differential equation that I want to solve contains terms of this type: (y")^2*x^2+2*y*y"+(y')^2. As you can see the higher exponential is in the higher order term of the equation. Any way to solve this type of equations?
  1 Commento
RahulTandon
RahulTandon il 6 Lug 2015
Use solve() the solve the equations algeabraically. Get the solutions to teh quadratic equations and then solve using ODExx for nth order diff equations!! Send copy of teh actual problem. if you can.

Accedi per commentare.

Risposta accettata

Roger Stafford
Roger Stafford il 6 Giu 2013
Try using 'ode15i' which can use implicit differential equations. In your example you would presumably have the two components in your function handle:
(y'(2))^2*t^2+2*y(1)*y'(2)+(y(2))^2 = 0
y'(1)-y(2) = 0

Più risposte (1)

Iván
Iván il 6 Giu 2013
you can define a system of equations like:
y'(2)= y(1);
y'(3)= y(2);
so that
y'(3)=y''(1);
in this way you can go from your equation to a ordinary diferential equation system and use any of the matlab ode solvers.
  1 Commento
Otoniel Diaz
Otoniel Diaz il 6 Giu 2013
Thanks for the answer, it works well for a "simple" non linear equation in which the higher derivative can be solved but in the problem I'm facing it is not posible to solve the equation for the higher derivative.

Accedi per commentare.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by