How to solve this error: "Error using DAGNetwork/activations (line 245) Incorrectly defined MiniBatchable Datastore. Error in read method of C:\Program Files\MATL​AB\R2020b\​toolbox\ma​tlab\datas​toreio\+ma​tlab\+io\+​datastore\​@ImageData​store\read​.m"

13 views (last 30 days)
I have the following code to extract the features from certain layer of ResNet101 deep learning model. However, after training the network, I am unable to extract the features from the layer specified below.
imds=imageDatastore('C:\Users\Manisha\Test', 'IncludeSubfolders', true, 'LabelSource','foldernames'); % There are two subfolders
tbl = countEachLabel(imds);
minSetCount = min(tbl{:,2});
imds = splitEachLabel(imds, minSetCount, 'randomize');
tbl = countEachLabel(imds)
[imdsTrain, imdsTest] = splitEachLabel(imds, 0.75, 'randomize');
net = resnet101;
numClasses = numel(categories(imds.Labels));
lgraph = layerGraph(net);
newFCLayer = fullyConnectedLayer(numClasses,'Name','new_fc','WeightLearnRateFactor',15,'BiasLearnRateFactor',15);
lgraph = replaceLayer(lgraph,'fc1000',newFCLayer);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,'ClassificationLayer_predictions',newClassLayer);
lgraph = replaceLayer(lgraph,'ClassificationLayer_fc1000',newClassLayer);
tbl1 = countEachLabel(imdsTrain)
tbl2 = countEachLabel(imdsTest)
inputSize = net.Layers(1).InputSize;
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain);%'DataAugmentation',imageAugmenter);
imageAugmenter = imageDataAugmenter('RandRotation',[-90,90])
augimdsTest = augmentedImageDatastore(inputSize(1:2),imdsTest, 'DataAugmentation',imageAugmenter);
options = trainingOptions('adam', ...
'MiniBatchSize',12, ...
'MaxEpochs',20, ...
'InitialLearnRate',1e-4, ...
'Shuffle','every-epoch', ...
'ValidationFrequency',10, ...
'Verbose',true, ...
trainedNet = trainNetwork(augimdsTrain,lgraph,options);
featureLayer = 'pool5'
trainingFeatures = activations(trainedNet, augimdsTrain, featureLayer, ...
'MiniBatchSize', 12, 'OutputAs', 'rows'); % error in this line
label_train = [zeros(tbl1.Count(1),1); ones(tbl1.Count(1),1)];
testFeatures = activations(trainedNet, augimdsTest, featureLayer, ...
'MiniBatchSize', 12, 'OutputAs', 'rows');
label_test = [zeros(tbl2.Count(1),1); ones(tbl2.Count(2),1)];

Answers (1)

Madhav Thakker
Madhav Thakker on 18 May 2021
Hi Manisha,
If you want your custom datastore to be MiniBatchable, the read function MUST output a 2 column table, as noted in this documentation link.
Hope this helps.


Find more on Deep Learning Toolbox in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by