FFT without inbuilt functions
22 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Onur Dikilitas
il 22 Apr 2021
Risposto: ROBIN SINGH SOM
il 7 Set 2021
I am trying to find fft for ECG signal. I am using .mat files. Right now I did the easy part with using inbuilt fft but I need to find fft without inbuilt funcitons beause of academic reasons. However I did not quite understand create a algorithm for fft and combine it .mat file.
clc;
load ('s0010_rem.mat')
ECGsignal = val;
Fs=1000;
L = 1000;
t = (0:length(ECGsignal)-1)/Fs;
val1 = val(1,:)/Fs;
val2 = val(2,:)/Fs;
val3 = val(3,:)/Fs;
val4 = val(4,:)/Fs;
val5 = val(5,:)/Fs;
val6 = val(6,:)/Fs;
val7 = val(7,:)/Fs;
val8 = val(8,:)/Fs;
val9 = val(9,:)/Fs;
val10 = val(10,:)/Fs;
The part of fft with inbuilt:
NFFT = 2^nextpow2(L); % Next power of 2 from length of y
val1_fft = fft(val1,NFFT)/L;
val2_fft = fft(val2,NFFT)/L;
val3_fft = fft(val3,NFFT)/L;
val4_fft = fft(val4,NFFT)/L;
val5_fft = fft(val5,NFFT)/L;
val6_fft = fft(val6,NFFT)/L;
val7_fft = fft(val7,NFFT)/L;
val8_fft = fft(val8,NFFT)/L;
val9_fft = fft(val9,NFFT)/L;
val10_fft = fft(val10,NFFT)/L;
f = Fs/2*linspace(0,1,NFFT/2+1);
0 Commenti
Risposta accettata
Più risposte (2)
ROBIN SINGH SOM
il 1 Set 2021
% 1sep2021
% fft operation without using inbuilt function
% only capable to compute fft upto N = 128 but it can be easily expendable
clc
clear
% generating random signal of length 30
x = randi([-5,5],1,30);
% length of the signal
N = length(x);
% number of stage required
M = log2(N);
% adding zeros
if (rem(M,1) ~= 0)
re =rem(M,1);
M=M-re+1;
Ne = 2^M;
x = [x,zeros(1,Ne-N)];
else
Ne = N;
end
% calc. using inbuild function
x_fft =fft(x);
% bitreversing
x = bitrevorder(x);
% instialization of variables used for different stages
temp = zeros(1,Ne);
temp2 = zeros(1,Ne);
temp3 = zeros(1,Ne);
temp4 = zeros(1,Ne);
temp5 = zeros(1,Ne);
temp6 = zeros(1,Ne);
temp7 = zeros(1,Ne);
% code
for l = 1:M
if l==1
for t=0:2:Ne-1
temp(t+1:t+2) = temp(t+1:t+2) + myfun(x(t+1:t+2),2^l);
end
out = temp;
end
if l==2
for k=0:4:Ne-1
temp2(k+1:k+4) = temp2(k+1:k+4) + myfun(temp(k+1:k+4),2^l);
end
out= temp2;
end
if l==3
for k=0:8:Ne-1
temp3(k+1:k+8) = temp3(k+1:k+8) + myfun(temp2(k+1:k+8),2^l);
end
out= temp3;
end
if l==4
for k=0:16:Ne-1
temp4(k+1:k+16) = temp4(k+1:k+16) + myfun(temp3(k+1:k+16),2^l);
end
out= temp4;
end
if l==5
for k=0:32:Ne-1
temp5(k+1:k+32) = temp5(k+1:k+32) + myfun(temp4(k+1:k+32),2^l);
end
out= temp5;
end
if l==6
for k=0:64:Ne-1
temp6(k+1:k+64) = temp6(k+1:k+64) + myfun(temp5(k+1:k+64),2^l);
end
out= temp6;
end
if l==7
for k=0:128:Ne-1
temp7(k+1:k+128) = temp7(k+1:k+128) + myfun(temp6(k+1:k+128),2^l);
end
out= temp7;
end
end
x % values of x
x_fft % fft calc. using inbuild function
out % fft calc. using myfunction (DIT)
figure()
hold on
stem(abs(out),'filled','LineStyle',"--","Marker","diamond","Color",'b',"LineWidth",1)
title("Without Inbuilt Function","FontSize",15)
hold off
figure()
hold on
stem(abs(x_fft),'filled','LineStyle',"-.",'Marker',"*","color",'r',"LineWidth",1)
title("With Inbuilt Function","FontSize",15)
hold off
figure()
hold on
stem(abs(x_fft),'filled','LineStyle',"-.",'Marker',"*","color",'r',"LineWidth",1)
stem(abs(out),'filled','LineStyle',"none","Marker","diamond","Color",'b',"LineWidth",1)
title("Overlapping","FontSize",15)
hold off
function out = myfun(inp,N)
twi = twiddle(N);
inp1 = [inp(1:N/2),inp(1:N/2)];
inp2 = [inp(N/2+1:N),inp(N/2+1:N)];
out = zeros(1,N);
for i=1:N
out(i) = inp1(i) + twi(i)*inp2(i);
end
end
function out = twiddle(N)
out = zeros(1,N);
for k=1:N
out(k) = exp(-1j*2*pi*(k-1)/N);
end
end
% author: Robin Singh Som
0 Commenti
ROBIN SINGH SOM
il 7 Set 2021
% 7sep2021
% fft operation without using inbuilt function
clc
clear
q = 10000;
% generating sin signale with 10000 samples
x = sin(2*pi*0.2*(0:q-1));
% length of the signal
N = length(x);
M = log2(N);
% adding zeros
if (rem(M,1) ~=0)
re = rem(M,1);
M = M-re+1;
Ne = 2^M;
x = [x,zeros(1,Ne-N)];
else
Ne = N;
end
N = Ne;
% number of stages
M = log2(N);
% calc. using inbuild function
x_fft =fft(x);
% bitreversing
x = bitrevorder(x);
% code
for l =1:M
k = 2^l;
w = exp((-1j*2*pi*(0:k-1))./(k));
for t=0:k:N-1
z(t+1:t+k) = [x(t+1:t+k/2)+x(t+k/2+1:t+k) .* w(1:k/2) , x(t+1:t+k/2)+x(t+k/2+1:t+k).*w(k/2+1:k)] ;
end
x = z;
z = 0;
end
out = x;
figure()
hold on
stem((0:N-1/N),(abs(out)),'filled','LineStyle',"--","Marker","diamond","Color",'b',"LineWidth",1)
title("Without Inbuilt Function","FontSize",15)
hold off
figure()
hold on
stem((0:N-1/N),(abs(x_fft)),'filled','LineStyle',"-.",'Marker',"*","color",'r',"LineWidth",1)
title("With Inbuilt Function","FontSize",15)
hold off
figure()
hold on
stem(abs(x_fft),'filled','LineStyle',"-.",'Marker',"*","color",'r',"LineWidth",1)
stem(abs(out),'filled','LineStyle',"none","Marker","diamond","Color",'b',"LineWidth",1)
title("Overlapping","FontSize",15)
hold off
%robin singh
0 Commenti
Vedere anche
Categorie
Scopri di più su Fourier Analysis and Filtering in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!