Symbolic Partial derivative

10 views (last 30 days)
mortain Antonio
mortain Antonio on 25 May 2011
Hello, I am trying to work out some partial derivative parameterised. Let's define p=1...9, i=1...4 and x={x_1,...,x_i} the equation to calculate is:
H_p=((-1)^p)*exp(0.5*x^T*x)*D^p/(Dx_1Dx_2..D_x^i[exp(-0.5*x^T*x)]
Which for p=1 and i=2 (Dx_1)H_1=x_1 and (Dx_2)H_1=x_2
Which for p=2 and i=2 (D^2x_1)H_2=(x_1^2-1) and (D^2x_2)H_2=(x_2^2-1) and (Dx_1Dx_2)H_2=(x_1*x_2)
Which for p=3 and i=2 (D^3x_1)H_3=(x_1^3-3*x_1) and (D^2x_1Dx_2)H_3=(x_1^2*x_2-x_2) and (D^2x_2Dx_1)H_3=(x_1*x_2^2-x_1) and (D^3x_2)H_3=(x_2^3-3*x_2)
etc....which come from the hermite polynomials of order p.
Do you have any suggestion how to calculate those symbolic derivatives and make th code flexible so that it will calculate them at different i and P or it is better to hard code the derivatives in your opinion?
Thanks

Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by