Build model detection after features extraction
2 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Hello,
I'm trying to code a nose detection function from a IR video.
I extracted 2 frames from the video and foud the features and compared between them.
ref_img = imread('frame_1.png');
ref_img_gray=rgb2gray(ref_img);
ref_pts=detectSURFFeatures(ref_img_gray);
[ref_features,ref_validPts]=extractFeatures(ref_img_gray,ref_pts);
figure; imshow(ref_img);
hold on; plot(ref_pts.selectStrongest(50));
image=imread('frame_50.png');
I=rgb2gray(image);
I_pts=detectSURFFeatures(I);
[I_features,I_validPts]=extractFeatures(I,I_pts);
figure;imshow(image);
hold on; plot(I_pts.selectStrongest(50));
index_pairs=matchFeatures(ref_features,I_features);
ref_matched_pts=ref_validPts(index_pairs(:,1)).Location;
I_matched_pts=I_validPts(index_pairs(:,2)).Location;
close all
figure,showMatchedFeatures(image,ref_img,I_matched_pts,ref_matched_pts);
Here the figure obtained :
What I have to do as a next step ? We can see from the figure that we got the 2 nostrils as features, so how to train a model a got a function that tracks the region for all the frames ?
thank you
0 Commenti
Risposta accettata
Manas Meena
il 13 Mag 2021
After SURF feature detection you can select the strongest points of interest (eg. nostrils) and the use the vision.PointTracker function to track these selected points in the video.
0 Commenti
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Computer Vision Toolbox in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!