# Storing the Data in Table format

4 views (last 30 days)
MD SAJJAD ALAM on 11 May 2021
Answered: Chaitanya Mallela on 23 Jun 2021
% Calculating the stress and strain at each laminate
clc,clear all
% Input the data
E1=input(' The elastic modulus in the fiber direction in GPa : ');
E2=input(' The elastic modulus in the transverse direction in GPa : ');
G12=input(' The rigidity of the material in GPa : ');
nu12=input(' The poisson ratio of the materal : ');
t=input(' Enter the value of the thickness in milimeter : ');
n=input(' Total number of the laminae : ');
% Calculation of thickness
z=t*[-0.5*n:1:0.5*n];
% Calculation of the stacking sequence.
theta=zeros(n,1);
for i=1:n
theta(i,1)=input(' Enter the angle in degree for the stacking sequence : ');
end
disp(' The stacking sequence for the given problem is : ')
disp(theta)
% Calculating the transformation coeffficient
nu21=(E2/E1)*nu12;
x=1-(nu12*nu21);
Q11=E1/x;
Q22=E2/x;
Q12=(nu12*E2)/x;
Q66=G12;
% Representing the transformed coefficient in the matrix form
Q=[Q11,Q12,0;Q12,Q22,0;0,0,Q66];
% Representing the formation of the A matrix
A1=zeros(3,3);
A=zeros(3,3);
% Representing the formation of the B matrix
B1=zeros(3,3);
B=zeros(3,3);
% Representing the formation of the D matrix
D1=zeros(3,3);
D=zeros(3,3);
% Calculating the transformed reduce matrix for different orientation
% forming the transformation matrix
for i=1:n
format short
m=cos(theta(i,1)*0.0174533);
n=sin(theta(i,1)*0.0174533);
T1=[m^2 n^2 2*m*n ;n^2 m^2 -2*m*n ; -m*n m*n (m^2-n^2)];
T=inv(T1);
T2=[m^2 n^2 m*n ; n^2 m^2 -m*n ; -2*m*n 2*m*n (m^2-n^2)];
% Calculating the tranformed reduces matrix
Qbar=T*Q*T2;
disp(' The Transformed reduced matrix for the each angle according to the stacking sequence : ')
disp(Qbar)
% Calculation of the A matrix
A1=Qbar*(z(i+1)-z(i));
A=A+A1;
% Calculation of the B matrix
B1=0.5*Qbar*(z(i+1)^2-z(i)^2);
B=B+B1;
% Calculation of the D matrix
D1=(1/3)*Qbar*(z(i+1)^3-z(i)^3);
D=D+D1;
end
% Dispalying the A matrix
disp(' The A matrix of the given laminate in Gpa-mm : ')
disp(A)
% Dispalying the B matrix
disp(' The B matrix of the given laminate in GPa-mm^2 : ')
disp(B)
if B==0
disp(' Here the B matrix is zero because our given laminate is symmetric. ')
end
% Displaying the D matrix
disp(' The D matrix of the given laminate in Gpa-mm^3: ')
disp(D)
% Represeting the ABD matrix
disp(' The ABD Matrix is : ')
ABD=[A B ; B D]
% Calculation of the mid strain and curvature
type=input(' Enter 1 for calculation of the stress and strain : ');
if type==1
% Input the further details
Nx=input(' Enter the force acting in the x direction in MPa-mm : ');
Ny=input(' Enter the force acting in the y direction in MPa-mm : ');
Nxy=input(' Enter the force acting in the xy direction in MPa-mm : ');
Mx=input(' Enter the Moment acting in the y direction in MPa-mm^2 : ');
My=input(' Enter the Moment acting in the y direction in MPa-mm^2 : ');
Mxy=input(' Enter the Moment acting in the xy direction in MPa-mm^2 : ');
% The externally applied load matrix is
NM=[Nx ; Ny ; Nxy ; Mx ; My ; Mxy];
% Calculation for the mid strain and curvature
Ek=(ABD)\NM;
% Storing the and representing the value of the mid strain and
% curvature
disp(' The mid plain strain in the x direction : ')
eox=Ek(1,1)
disp(' The mid plain strain in the y direction : ')
eoy=Ek(2,1)
disp(' The mid plain strain in the xy direction : ')
eoxy=Ek(3,1)
disp(' The curvature in the x direction : ')
kox=Ek(4,1)
disp(' The curvature in the y direction : ')
koy=Ek(5,1)
disp(' The curvature in the xy direction : ')
koxy=Ek(6,1)
%Calculation of the strains at the each laminae
k=input(' Again write the number of the laminae : ');
% Storing the value of the strain in the x direction
ex=zeros(k+1,1);
% Stroring the value of the strain in the y direction
ey=zeros(k+1,1);
% Storing the value of the shear strain in the xy direction
exy=zeros(k+1,1);
% Positioning the strain value
for i=1:k+1
% Calculating the strain at the each laminae
ex(i,1)=eox+z(i)*kox;
ey(i,1)=eoy+z(i)*koy;
exy(i,1)=eoxy+z(i)*koxy;
end
else
disp(' Nothing ')
end
Inputs are
E1=138
E2=9
G12=6.9
nu12=0.3
t=0.25
n=4
% Stacking Seq in degrees.
-45
45
-45
45
% If 1 Selected then inputs
Nx=50
rest = 0
k=4
% My question is , I want to store the value of the ex, ey, exy like shown below.

Chaitanya Mallela on 23 Jun 2021
Use the table function to store the data in table format. For more information, refer the documentation here.