Generating a particular sequnce of numbers

2 visualizzazioni (ultimi 30 giorni)
Hi,
given a variable natural number d, I'm trying to generate a sequence of the form:
[1 2 1 3 2 1 4 3 2 1.......d d-1 d-2......3 2 1].
I don't want to use for loop for this process, does anyone know a better (faster) method. I tried the colon operator without any success.
Thank you.
Adi

Risposta accettata

Azzi Abdelmalek
Azzi Abdelmalek il 27 Lug 2013
Modificato: Azzi Abdelmalek il 27 Lug 2013
d=4
cell2mat(arrayfun(@(x) x:-1:1,1:d,'un',0))
  7 Commenti
Youssef  Khmou
Youssef Khmou il 27 Lug 2013
ok thank you for the explanation .
Jan
Jan il 28 Lug 2013
Azzi's for loop approach is faster.

Accedi per commentare.

Più risposte (6)

Roger Stafford
Roger Stafford il 27 Lug 2013
Here's another method to try:
N = d*(d+1)/2;
A = zeros(1,N);
n = 1:d;
A((n.^2-n+2)/2) = n;
A = cumsum(A)-(1:N)+1;
  1 Commento
Adi gahlawat
Adi gahlawat il 27 Lug 2013
Modificato: Adi gahlawat il 27 Lug 2013
Hi Roger,
your method is excellent. It's about 2 times faster than my for loop based code. Much obliged.
Adi

Accedi per commentare.


Azzi Abdelmalek
Azzi Abdelmalek il 28 Lug 2013
Modificato: Azzi Abdelmalek il 28 Lug 2013
Edit
This is twice faster then Stafford's answer
A4=zeros(1,d*(d+1)/2); % Pre-allocate
c=0;
for k=1:d
A4(c+1:c+k)=k:-1:1;
c=c+k;
end
  1 Commento
Jan
Jan il 28 Lug 2013
Modificato: Jan il 28 Lug 2013
Yes, this is exactly the kind of simplicity, which runs fast. While the one-liners with anonymous functions processed by cellfun or arrayfun look sophisticated, such basic loops hit the point. +1
I'd replace sum(1:d) by: d*(d+1)/2 . Anbd you can omit idx.

Accedi per commentare.


Richard Brown
Richard Brown il 29 Lug 2013
Even faster:
k = 1;
n = d*(d+1)/2;
out = zeros(n, 1);
for i = 1:d
for j = i:-1:1
out(k) = j;
k = k + 1;
end
end
  7 Commenti
Jan
Jan il 29 Lug 2013
Modificato: Jan il 29 Lug 2013
Under R2011b I get for d=1000 and 500 repetitions:
Elapsed time is 3.466296 seconds. Azzi's loop
Elapsed time is 3.765340 seconds. Richard's double loop
Elapsed time is 1.897343 seconds. C-Mex (see my answer)
Richard Brown
Richard Brown il 29 Lug 2013
Modificato: Richard Brown il 29 Lug 2013
I checked again, and I agree with Azzi. My method was running faster because of another case I had in between his and mine. The JIT was doing some kind of unanticipated optimisation between cases.
I get similar orders of magnitude results to Azzi for R2012a if I remove that case, and if I run in R2013a (Linux), his method is twice as fast.
Shame, I like it when JIT brings performance of completely naive loops up to vectorised speed :)

Accedi per commentare.


Jan
Jan il 29 Lug 2013
An finally the C-Mex:
#include "mex.h"
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray*prhs[]) {
mwSize d, i, j;
double *r;
d = (mwSize) mxGetScalar(prhs[0]);
plhs[0] = mxCreateDoubleMatrix(1, d * (d + 1) / 2, mxREAL);
r = mxGetPr(plhs[0]);
for (i = 1; i <= d; i++) {
for (j = i; j != 0; *r++ = j--) ;
}
}
And if your number d can be limited to 65535, the times shrink from 1.9 to 0.34 seconds:
#include "mex.h"
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray*prhs[]) {
uint16_T d, i, j, *r;
d = (uint16_T) mxGetScalar(prhs[0]);
plhs[0] = mxCreateNumericMatrix(1, d * (d + 1) / 2, mxUINT16_CLASS, mxREAL);
r = (uint16_T *) mxGetData(plhs[0]);
for (i = 1; i <= d; i++) {
for (j = i; j != 0; *r++ = j--) ;
}
}
For UINT32 0.89 seconds are required.
  1 Commento
Richard Brown
Richard Brown il 29 Lug 2013
Nice. I imagine d would be limited to less than 65535, that's a pretty huge vector otherwise

Accedi per commentare.


Richard Brown
Richard Brown il 29 Lug 2013
Modificato: Richard Brown il 29 Lug 2013
Also comparable, but not (quite) faster
n = 1:(d*(d+1)/2);
a = ceil(0.5*(-1 + sqrt(1 + 8*n)));
out = a.*(a + 1)/2 - n + 1;
  3 Commenti
Jan
Jan il 29 Lug 2013
@Richard: How did you find this formula?
Richard Brown
Richard Brown il 29 Lug 2013
If you look at the sequence, and add 0, 1, 2, 3, 4 ... you get
n: 1 2 3 4 5 6 7 8 9 10
1 3 3 6 6 6 10 10 10 10
Note that these are the triangular numbers, and that the triangular numbers 1, 3, 6, 10 appear in their corresponding positions, The a-th triangular number is given by
n = a (a + 1) / 2
So if you solve this quadratic for a where n is a triangular number, you get the index of the triangular number. If you do this for a value of n in between two triangular numbers, you can round this up, and invert the formula to get the nearest triangular number above (which is what the sequence is). Finally, you just subtract the sequence 0, 1, 2, ... to recover the original one.

Accedi per commentare.


Andrei Bobrov
Andrei Bobrov il 27 Lug 2013
Modificato: Andrei Bobrov il 30 Lug 2013
out = nonzeros(triu(toeplitz(1:d)));
or
out = bsxfun(@minus,1:d,(0:d-1)');
out = out(out>0);
or
z = 1:d;
z2 = cumsum(z);
z1 = z2 - z + 1;
for jj = d:-1:1
out(z1(jj):z2(jj)) = jj:-1:1;
end
or
out = ones(d*(d+1)/2,1);
ii = cumsum(d:-1:1) - (d:-1:1) + 1;
out(ii(2:end)) = 1-d : -1;
out = flipud(cumsum(out));

Categorie

Scopri di più su Performance and Memory in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by