Does anyone know of code for building an LSTM recurrent neural network?
9 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
I am trying to build a form of recurrent neural network - a Long Short Term Memory RNN. I have not been able to find this architecture available on the web. Any advice will be appreciated.
1 Commento
Bradley Wright
il 25 Mag 2016
I also have been on the look for an LTSM network in Matlab that I could adopt and re-purpose. Would really like to see mathworks give more support to neural nets.
In the meantime, I did find this. https://github.com/joncox123/Cortexsys
Risposte (8)
oshri
il 19 Gen 2017
Hi, I just implemented today LSTM using MATLAB neural network toolbox. Here is the code:
function net1=create_LSTM_network(input_size , before_layers , before_activation,hidden_size, after_layers , after_activations , output_size)
%%this part split the input into two seperate parts the first part
%is the input size and the second part is the memory
real_input_size=input_size ;
N_before=length(before_layers);
N_after=length(after_layers) ;
delays_vec=1 ;
if (N_before>0 ) && (N_after>0)
input_size=before_layers(end) ;
net1=fitnet( [before_layers , input_size+hidden_size , hidden_size*ones(1,9),after_layers]) ;
elseif (N_before>0) && (N_after==0)
input_size=before_layers(end) ;
net1=fitnet([before_layers,input_size+hidden_size , hidden_size*ones(1 , 9)]) ;
elseif (N_before==0)&&(N_after>0)
net1=fitnet([input_size+hidden_ size , hidden_size*ones(1, 9) , after_layers]) ;
else
net1 =fitnet( [input size+hidden_size, hidden_size*ones(1, 9)]);
end
net1=configure(net1 ,rand( real_input_size , 200) , rand(output_size,200)) ;
%%concatenation
net1.layers{N_before+1}.name='Concatenation Layer';
net1.layers{N_before+2}.name = 'Forget Amount' ;
net1.layers{N_before+3}.name= 'Forget Gate';
net1.layers{N_before+4}.name= 'Remember Amount';
net1.layers{N_before+5}.name= 'tanh Input' ;
net1.layers{N_before+6}.name= 'Forget Gate';
net1.layers{N_before+7}.name= 'Update Memory';
net1.layers {N_before+8}.name= 'tanh Memory';
net1.layers{N_before+9}.name= 'Combine Amount' ;
net1.layers{N_before+10}.name= 'Combine gate' ;
net1.layerConnect(N_before+3 , N_before+7) =1 ;
net1.layerConnect(N_before+1 ,N_before+10)=1 ;
net1.layerConnect(N_before+4 , N_before+3)=0;
net1.layerWeights{N_before+1 , N_before+10}.delays=delays_vec ;
if N_before>0
net1.LW{N_before+1 , N_before} = [eye(input_size) ; zeros(hidden_size, input_size)];
else
net1.IW{1,1}=[eye( input_size) ;zeros(hidden_size , input_size)];
end
net1.LW{N_before+1 , N_before+10}=repmat ([zeros(input_size, hidden_size); eye(hidden_size)] , [1 , size(delays_vec,2)] ) ;
net1.layers{N_before+1}.transferFcn='purelin';
net1.layerWeights{N_before+1 ,N_before+10}.learn=false;
if N_before>0
net1.layerWeights{ N_before+1 ,N_before}.learn=false;
else
net1.inputWeights{ 1, 1}.learn=false ;
end
net1.biasConnect = [ones(1,N_before) 0 1 0 1 1 0 0 0 1 0 1 ones(1,N_after)]' ;%
%%first gate
net1.layers{N_before+2}.transferFcn= 'logsig' ;
net1.layerWeights{N_before+3, N_before+2}.weightFcn='scalprod' ;
% net1 .layerWeights{3 , 7} .weightFcn= ' scalprod ';
net1.layerWeights{N_before+3, N_before+2}.learn=false;
net1.layerWeights{N_before+3, N_before+7}.learn=false ;
net1.layers{N_before+3}.netinputFcn= 'netprod';
net1.layers{N_before+3}.transferFcn='purelin';
net1.LW{N_before+3, N_before+2}=1;
% net1.LW{3 , 7} =1 ;
%%second gate
net1.layerConnect(N_before+4,N_before+1)=1;
net1.layers{N_before+4}.transferFcn='logsig' ;
%%tanh
net1.layerConnect(N_before+5 , N_before+4) =0;
net1.layerConnect( N_before+5 , N_before+1)=1;
%%second gate mult
net1.layerConnect(N_before+6, N_before+4)=1;
net1.layers{N_before+6}.netinputFcn='netprod' ;
net1.layers{N_before+6} .transferFcn= 'purelin';
net1.layerWeights{N_before+6, N_before+5}.weightFcn='scalprod';
net1.layerWeights {N_before+6 , N_before+4}.weightFcn='scalprod';
net1.layerWeights{N_before+6 , N_before+5}.learn=false ;
net1.layerWeights{N_before+6,N_before+4}.learn=false;
net1.LW{N_before+6 , N_before+5} =1;
net1.LW{N_before+6 , N_before+4}=1 ;
%%C update
delays_vec=1;
net1.layerConnect(N_before+7,N_before+3)=1 ;
net1.layerWeights{N_before+3,N_before+7} . delays=delays_vec ;
net1.layerWeights{N_before+7,N_before+3}.weightFcn= 'scalprod';
net1.layerWeights{N_before+7,N_before+6}.weightFcn= 'scalprod';
net1 .layers{N_before+7}.transferFcn= 'purelin';
net1.LW{N_before+7 , N_before+3} =1 ;
net1.LW{N_before+7 , N_before+6} =1 ;
net1.LW{N_before+3 , N_before+7}=repmat(eye(hidden_size), [1 , size(delays_vec,2)] );
net1.layerWeights{N_before+3 , N_before+7}.learn=false ;
net1.layerWeights{N_before+7 ,N_before+6}.learn=false;
net1.layerWeights{N_before+7,N_before+3}.learn=false;
%%output stage
net1.layerConnect(N_before+9, N_before+8)=0;
net1.layerConnect(N_before+10 , N_before+8) = 1 ;
net1.layerConnect(N_before+9, N_before+1) =1 ;
net1.layerWeights{N_before+10 , N_before+8}.weightFcn='scalprod' ;
net1.layerWeights{N_before+10 , N_before+9}.weightFcn= 'scalprod' ;
net1.LW{N_before +10 ,N_before+9}=1 ;
net1.LW{N_before+10,N_before+8}=1 ;
net1.layers{N_before+10}.netinputFcn= 'netprod' ;
net1.layers{N_before+10}.transferFcn= 'purelin';
net1.layers{N_before+9}.transferFcn= 'logsig';
net1.layers{N_before+5}.transferFcn='tansig';
net1.layers{N_before+8}.transferFcn='tansig' ;
net1.layerWeights{N_before+10 ,N_before+ 9}.learn= false ;
net1.layerWeights{N_before +10,N_before+8 }.learn= false ;
net1.layerWeights{N_before+7 ,N_before+3 }. learn=false ;
for ll=1:N_before
net1.layers{ll}.transferFcn=before_activation;
end
for ll=1:N_after
net1. layers{end-ll}.transferFcn=after_activations ;
end
net1.layerWeights{N_before+8 , N_before+7}.weightFcn='scalprod' ;
net1.LW{N_before+8 , N_before+7}=1 ;
net1.layerWeights{N_before+8 , N_before+7}.learn=false ;
net1=configure(net1 , rand(real_input_size ,200) , rand(output_size , 200) ) ;
net1.trainFcn= 'trainlm';
6 Commenti
sujan ghimire
il 11 Nov 2017
I have tried 25 inputs with 1 output for non linear regression and it is not working.
Sebastine Hirimeti
il 16 Feb 2017
Hi,
Can someone please help me a bit more on how to run the code, the inputs, etc.,
Also any reference on how this is built like a paper
Thanks
1 Commento
David Kuske
il 26 Ott 2017
Does this code support regressionoutput for LSTMs? Matlab doesnt seem to have implemented that yet. also any help on how to use this code would be highly appreciated.
0 Commenti
Shounak Mitra
il 31 Ott 2017
As of 17b, MATLAB does support LSTMs. Please check https://www.mathworks.com/help/nnet/examples/classify-sequence-data-using-lstm-networks.html
1 Commento
chadi cream
il 7 Feb 2018
Lstm in matlab 2017b support classification. But does it support prediction regression.? Thanks
Shounak Mitra
il 9 Ott 2018
Modificato: KSSV
il 6 Giu 2019
@Chadi: Yes, it does support regression as well. Here's the doc link: <https://www.mathworks.com/help/deeplearning/ug/long-short-term-memory-networks.html>
@Vinothini: You do not need to understand the code. you can directly start using LSTMs in your work following the document link I pasted above.
0 Commenti
Renaud Jougla
il 6 Mag 2019
Hello everybody. I am a relatively new user of matlab. I am trying to use LSTM ANN. The code proposed above runs well. Unfortunetaly I don't understand how to use it then... I mean I have this function called create_LSTM_network but now how can I use with my training data ? For example if I have data called x_train with predictives variables and y_train with data I wnat to predict, how do I have to write my code to train my LSTM ANN with these data ?
Thanks a lot for your help and time.
Regards
0 Commenti
Kwangwon Seo
il 18 Lug 2019
Hi. I tried to use the code above. And I don't know how to input my data in the code.
Is there anyone to solve this problem?
Thank you.
0 Commenti
Vedere anche
Categorie
Scopri di più su Sequence and Numeric Feature Data Workflows in Help Center e File Exchange
Prodotti
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!