Double summation with vectorized loops

8 visualizzazioni (ultimi 30 giorni)
Hi. I want to vectorize this double for loop because it is a bottleneck in my code. Since MATLAB is a based-one indexing language I have to create an additional term for M = 0.
R,r,lambda,phi,mu_p are constants
Slm(L,M),Clm(L,M) are matrices 70x70
Plm(L,M) is a matrix 70x71
Cl(L),Pl(L) are vectors 70x1
% function dU_r
s1 = 0;
for L = 2:70
s1 = s1 + ((R/r)^L)*(L+1)*Pl(L)*Cl(L);
for M = 1:L
s1 = s1 + ((R/r)^L)*(L+1)*Plm(L,M)*(Clm(L,M)*...
cos(M*lambda) + Slm(L,M)*sin(M*lambda));
end
end
dU_r = -(mu_p/(r^2))*s1;
% function dU_phi
s2=0;
for L = 2:70
s2 = s2 + ((R/r)^L))*Plm(L,1)*Cl(L);
for M = 1:L
s2 = s2 + ((R/r)^L)*(Plm(L,M+1)-M*tan(phi)*Plm(L,M))*...
(Clm(L,M)*cos(M*lambda) + Slm(L,M)*sin(M*lambda));
end;
end;
dU_phi = (mu_p/r)*s2;
% function dU_lambda
s3=0;
for L=2:70
for M=1:L
s3 = s3 + ((R/r)^L)*M*Plm(L,M)*(Slm(L,M)*cos(M*lambda)...
- Clm(L,M)*sin(M*lambda));
end;
dU_lambda = (mu_p/r)*s3;
  3 Commenti
Julián Francisco
Julián Francisco il 31 Mag 2011
@Jan Simon: This term is used inside another for loop. I had not written all code because the remaining for loops are similar but, finally, I have decided to do it. Thank you very much for your help.
Jan
Jan il 31 Mag 2011
@Julian: Now you have expanded your code. Following my example you can calcluate the three sums simultaneously.
The general rule is: Move all repeated claculations out of the loop. E.g. for dU_phi
you calculate TAN(phi) 2484 times, although it is constant.

Accedi per commentare.

Risposta accettata

Jan
Jan il 30 Mag 2011
Let's solve the the inner loop at first (I prefer "j", because the lower case "L" looks like a one):
R = rand; r = rand; lambda = rand;
Slm = rand(70); Clm = rand(70);
Plm = rand(70, 71);
Cl = rand(70, 1); Pl = rand(70, 1);
s = 0;
for j = 2:70
s = s + ((R/r)^j) * (j+1) * Pl(j) * Cl(j) + ...
sum(((R/r)^j) * (j+1) * Plm(L,1:j) .* ...
(Clm(L, 1:j) .* cos((1:j) * lambda) + ...
Slm(L, 1:j) .* sin((1:j) * lambda)));
end
But this is 4 times slower than the original version under Matlab 2009a!
Let's try to avoid the repeated power, COS and SIN:
Rr = R / r;
RrL = RrL; % EDITED: No cumprod anymore -> 5% faster
cosLambda = cos((1:70)* lambda);
sinLambda = sin((1:70)* lambda);
u1 = uint8(1);
s = 0;
for j = uint8(2):uint8(70)
RrL = RrL * Rr;
q = RrL * (double(j) + 1);
t = Pl(j) * Cl(j);
for m = u1:j
t = t + Plm(j,m) * ...
(Clm(j, m) * cosLambda(m) + ...
Slm(j, m) * sinLambda(m));
end
s = s + q * t;
end
EDITED: 40% faster with UINT8 loop indices instead of DOUBLEs! Same speed for INT32, but only 25% for UINT32.
This is 12 times faster than the original version - with FOR loops!
So vectorized does not necessarily mean faster. The JIT acceleration introduced with Matlab 6.5 increases the speed of this loop remarkably. And avoiding powers and trigonometric calculations is important also.
The old tale of the slow FOR loops is very sticky.
  11 Commenti
Nehal fawzy
Nehal fawzy il 7 Apr 2019
56819066_381115406071851_6045156277162606592_n.png
how to write second and third equation for image with matlab code plz?
Walter Roberson
Walter Roberson il 7 Apr 2019
Please start a new Question for this.

Accedi per commentare.

Più risposte (2)

Matt Fig
Matt Fig il 31 Mag 2011
Here is a vectorized version, but I must say that I would have probably just went with Jan's FOR loop. It seems you need to see a vectorization, even if it is not the most efficient solution. Here you go:
V = ((R/r).^(2:70));
s = repmat(1:70,69,1);
s = sum(V(1:69).*(3:71).*sum(tril(Plm(2:70,1:70).*...
(Clm(2:70,1:70).*cos(s*lambda)+Slm(2:70,1:70).*...
sin(s*lambda)),1),2).'+V.*(3:71).*Pl(2:70).'.*Cl(2:70).');
  11 Commenti
Jan
Jan il 1 Giu 2011
@Matt: Yes, we have discussed this before. But when I look into to source of Matlab's toolbox functions, e.g. MAT2CELL, it does not look like we have impressed the TMW developers very much - at least until 2009.
I like the way you make Matlab run "faster than expected". The consequent avoiding of work is real efficiency. :-)
The OP has different timings, because his Pl and Plm are sparse. But for the full Pl and >50% full Plm sparsity wastes time by impeding the JIT.
Bjorn Gustavsson
Bjorn Gustavsson il 2 Giu 2011
@Jan, you got my hopes up with that 25%! (On the other hand maybe it was just as well that it was "by 25%" - saves me a whole lot of dreary rewriting. But with the speedup we're getting closer to the practices of "normal" programming - having to make sure that we use the optimal type for each variable...)

Accedi per commentare.


Julián Francisco
Julián Francisco il 1 Giu 2011
Hi. Taking like reference the solution Jan3, given by Jan Simon, I have written the following code for my problem. Thank all that have collaborated with comments and suggestions.
Rr = R/r;
RrL = Rr;
cosLambda = cos((1:70)* lambda);
sinLambda = sin((1:70)* lambda);
u1 = uint8(1);
s1 = 0;
s2 = 0;
s3 = 0;
for j = uint8(2):uint8(70)
RrL = RrL * Rr;
q1 = RrL * (double(j) + 1);
t1 = Pl(j) * datos.Cl(j);
q2 = RrL;
t2 = Plm(j,1) * Cl(j);
t3 = 0;
for m = u1:j
t1 = t1 + Plm(j,m) * ...
(Clm(j, m) * cosLambda(m) + ...
Slm(j, m) * sinLambda(m));
t2 = t2 + (Plm(j,m+1)-double(m)*tan_phi*Plm(j,m))*...
(Clm(j,m)*cosLambda(m) + Slm(j,m)*sinLambda(m));
t3 = t3 + double(m)*Plm(j,m)*(Slm(j,m)*cosLambda(m)...
- Clm(j,m)*sinLambda(m));
end
s1 = s1 + q1 * t1;
s2 = s2 + q2 * t2;
s3 = s3 + q2 * t3;
end
dU_r = -(mu_p/(r^2))*s1;
dU_phi = (mu_p/r)*s2;
dU_lambda = (mu_p/r)*s3;

Categorie

Scopri di più su Performance and Memory in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by